

UNDERSTANDING
INTRUSION DETECTION

THROUGH VISUALIZATION

Advances in Information Security

Sushil Jajodia
Consulting Editor

Center for Secure Information Systems
George Mason University
Fairfax, VA 22030-4444
email: iaiodia @ smu, edu

The goals of the Springer International Series on ADVANCES IN INFORMATION
SECURITY are, one, to establish the state of the art of, and set the course for future research
in information security and, two, to serve as a central reference source for advanced and
timely topics in information security research and development. The scope of this series
includes all aspects of computer and network security and related areas such as fault tolerance
and software assurance.

ADVANCES IN INFORMATION SECURITY aims to publish thorough and cohesive
overviews of specific topics in information security, as well as works that are larger in scope
or that contain more detailed background information than can be accommodated in shorter
survey articles. The series also serves as a forum for topics that may not have reached a level
of maturity to warrant a comprehensive textbook treatment.

Researchers, as well as developers, are encouraged to contact Professor Sushil Jajodia with
ideas for books under this series.

Additional titles in the series:
HOP INTEGRITY IN THE INTERNET by Chin-Tser Huang and Mohamed G.
Gouda; ISBN-10: 0-387-24426-3
PRIVACY PRESERVING DATA MINING by Jaideep Vaidya, Chris Clifton and Michael
Zhu;ISBN-10: 0-387-25886-8
BIOMETRIC USER AUTHENTICATION FOR IT SECURITY: From Fundamentals to
Handwriting by Claus Vielhauer; ISBN-10: 0-387-26194-X
IMPACTS AND RISK ASSESSMENT OF TECHNOLOGY FOR INTERNET
SECURITY:Enahled Information Small-Medium Enterprises (TEISMES) by Charles A.
Shoniregun; ISBN-10: 0-387-24343-7
SECURITY IN E'LEARNING by Edgar R. Weippl; ISBN: 0-387-24341-0
IMAGE AND VIDEO ENCRYPTION: From Digital Rights Management to Secured
Personal Communication by Andreas Uhl and Andreas Pommer; ISBN: 0-387-23402-0
INTRUSION DETECTION AND CORRELATION: Challenges and Solutions by
Christopher Kruegel, Fredrik Valeur and Giovanni Vigna; ISBN: 0-387-23398-9
THE AUSTIN PROTOCOL COMPILER by Tommy M. McGuire and Mohamed G. Gouda;
ISBN: 0-387-23227-3
ECONOMICS OF INFORMATION SECURITY by L. Jean Camp and Stephen Lewis;
ISBN: 1-4020-8089-1
PRIMALITY TESTING AND INTEGER FACTORIZATION IN PUBLIC KEY
CRYPTOGRAPHY by Song Y. Yan; ISBN: 1-4020-7649-5
SYNCHRONIZING E-SECURITY by Godfri&d B. Williams; ISBN: 1-4020-7646-0

Additional information about this series can be obtained from
http://www.springeronline.com

http://www.springeronline.com

UNDERSTANDING
INTRUSION DETECTION

THROUGH VISUALIZATION

by

Stefan Axelsson
Chalmers University of Technology

Göteborg, Sweden

David Sands
Chalmers University of Technology

Göteborg, Sweden

Springer

Dr. Stefan Axelsson Prof. David Sands
Dept. of Computer Science and Engineering Dept. of Computer Science and Engineering
Chalmers University of Technology Chalmers University of Technology
412 96 GÖTEBORG 412 96 GÖTEBORG
SWEDEN SWEDEN

Library of Congress Control Number: 2005933712

UNDERSTANDING INTRUSION DETECTION THROUGH VISUALIZATION
by Stefan Axelsson and David Sands

ISBN-13: 978-0-387-27634-2
ISBN-10: 0-387-27634-3
e-ISBN-13: 978-0-387-27636-6
e-ISBN-10: 0-387-27636-X

Printed on acid-free paper.

© 2006 Springer Science+Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or
in part without the written permission of the publisher (Springer
Science+Business Media, Inc., 233 Spring Street, New York, NY 10013,
USA), except for brief excerpts in connection with reviews or scholarly
analysis. Use in connection with any form of information storage and
retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now know or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and
similar terms, even if the are not identified as such, is not to be taken as
an expression of opinion as to whether or not they are subject to
proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1 SPIN 11425250, 11524885

springeronline.com

http://springeronline.com

Contents

List of Figures ix
List of Tables xi
Foreword xiii
Preface xvii
Acknowledgments xix

L INTRODUCTION 1

1 Context 1

2 Computer Security 2

3 Rationale and Problem Statement 3

4 Information Visualization 4

5 Overview of the book 5

2. AN INTRODUCTION TO INTRUSION DETECTION 15

1 Intrusion Prevention 15

2 Intrusion Detection 17

3. THE BASE-RATE FALLACY AND THE DIFFICULTY OF
INTRUSION DETECTION 31

1 Problems in Intrusion Detection 32

2 The Base-Rate Fallacy 32

3 The Base-Rate Fallacy in Intrusion Detection 35

4 Impact on Intrusion Detection Systems 40

5 Future Directions 46

6 Further Reading 46

7 Conclusions 47

vi UNDERSTANDING INTRUSION DETECTION

4. VISUALIZING INTRUSIONS: WATCHING THE

WEBSERVER 49

1 The Experimental System 50

2 The Log Reduction Scheme 51

3 VisuaHzing the Lowest Scoring Requests 52

4 Detailed Analysis of the Features Found 56

5 Effectiveness of the Log Reduction Scheme 59

6 Discussion 63

7 Future Work 66

8 Conclusions 66

9 Further Reading 67

5. COMBINING A BAYESIAN CLASSIFIER WITH
VISUALIZATION 69

1 Automated Learning for Intrusion Detection 69

2 Naive Bayesian Detection 70

3 The Experimental Data 71

4 Visualizing a Bayesian IDS 73

5 The Training Data 80

6 The Experiment 80

7 Conclusions 86

6. VISUALIZING THE INNER WORKINGS OF A

SELF LEARNING CLASSIFIER 89

1 Introduction 89

2 Markovian Matching with Chi Square Testing 90

3 Visualizing the Detector 92

4 The Experimental Data 98

5 Experimental Results 99

6 Conclusions 109

7 Future Work 109

7. VISUALIZATION FOR INTRUSION DETECTION
—HOOKING THE WORM 111

1 Introduction 111

2 The Monitored System 112

3 Scientific Visualization 114

Contents vii

4 Visual Analysis of the Log File 119

5 Results of the Investigation 121

6 Discussion 125

7 Conclusion 126

8 Future Work 126

8. EPILOGUE 129

1 Results in Perspective 129

2 Further Reading 130

3 Conclusions and Future Work 132

References 133

Author Index 141

Index 143

List of Figures

2.1 Anti-intrusion techniques 15

2.2 Organisation of a generalised intrusion detection system 21

2.3 Classical detection theory model 23

2.4 One dimensional detection model 25

3.1 Venn diagram of medical diagnostic example 34

3.2 Plot of Bayesian detection rate versus false alarm rate 39

3.3 ROC-curves for the "low performers" 41

3.4 ROC-curve for the "high performers" 41

4.1 Frequencies of component frequencies 51

4.2 Requests sorted by lowest score 51

4.3 Graph of the lowest scoring requests 53

4.4 Zoom on feature (Spam attack in this case) 54

4.5 Zoom on feature (benign accesses forming a subgraph, isolated) 55

4.6 Zoom on feature (benign accesses forming a subgraph, in vivo) 56

4.7 Zoom on feature (benign accesses forming a not very clear
subgraph) 57

4.8 The remaining accesses deemed to be intrusion attempts, 2D
graph 60

4.9 The remaining accesses deemed to be intrusion attempts, 3D
graph 61

5.1 The Bayesvis tool 75

5.2 The Bayesvis tool after retraining on false alarms 78

5.3 The Bayesvis tool after having corrected under training 79

5.4 False positives during the training phase 83

5.5 Examples of false alarms in February log 84

List of Figures

5.6 Generalized detection of Unicode attacks 86
6.1 The Chi2vis tool after training one bad and one good 93
6.2 The Chilvis tool after training one bad and two good 96
6.3 The Chi2vis tool after training two bad and two good 97
6.4 Generalising the Unicode training to detect new instances 102
6.5 False alarms: Example of the //EAD-pattem 103
6.6 Results from training on syscall data 104
6.7 All the false alarms of Bayesvis 107
6.8 The "cgi-bin" pattern false alarms of Bayesvis 108
7.1 Sample records from the webserver log file 114
7.2 A simple parallel coordinate plot 116
7.3 A trellis of parallel coordinate plots 120
7.4 A plot of the "Code-red" worm access pattern 122
7.5 The six different requests made by pattern 1 from Figure 7.3 123

List of Tables

4.1 Detection rates of the log reduction mechanism 62
4.2 Summary of the true and false alarms of the log reduction

mechanism 63
4.3 Number of previously unseen (new) accesses for the follow

ing months 64
5.1 Summary of the types of accesses in the training data 81
5.2 Summary of the results of the experiment (approximate values) 87
6.1 Summary of the types of accesses in the training data 99
6.2 False negatives (misses) in testing data 101
6.3 False positives (false alarms) in testing data 102
6.4 False negatives (misses) in testing data for Bayesvis 105
6.5 False positives (false alarms) in testing data for Bayesvis 106

Foreword

This monograph is the outgrowth of Stefan Axelson's PhD Dissertation at
Chalmers University in Göteborg, Sweden. The dissertation, in turn collects
a number of research efforts performed over a period of six years or so into a
coherent whole. It was my honor to serve as the "opponent" at Dr. Axelsson's
examination. In the Swedish system, it is the job of the opponent to place the
candidate's work into a broader perspective, demonstrating its significance and
contributions to the field and then to introduce the work to the attendees at
the examination. This done, the candidate presents the technical details of the
work and the opponent critiques the work giving the candidate the opportunity
to defend it^. This forward is adapted from the introduction that I gave at the
examination and should serve to acquaint the reader, not only with the work at
hand, but also with the field to which it applies. The title of the work, "Under
standing Intrusion Detection Through Visualization," is particularly telling. As
is the case with any good piece of research, we hope to gain an understanding of
a problem, not just a recipe or simple solution of immediate, but limited utility.

For much of its formative period, computer security concentrated on devel
oping systems that, in effect, embodied a fortress model of protection. These
systems were intended to be immune to most of the attacks that we see today
and were supposed to be capable of processing classified material at multiple
levels of security (MLS). The problem of building highly secure systems was
harder than thought, but, by the early 1990s, a number of promising systems
were beginning to emerge.

In the mid 1980s commodity personal computers emerged. These were
initially produced without any regard for security - not even protecting the user

^ It is interesting to note that Swedish technical universities received the ability to award PhDs rather late
(1940 in the case of Chalmers), as it was felt that the work of the master engineer had to stand above any
criticism and it was thus inappropriate to subject it to a form of examination which in its very form relied on
the work being subjected to critique.

xiv Foreword

from himself. The military adopted these platforms wholesale in spite of their
insecurity and stopped substantial MLS research efforts in the mid 1990s.

By the late 1980s, broad band networks were available to most corpora
tions and to many educational institutions. Increasingly, these were using PC
based platforms as network nodes. Node level security was minimal and diffi
cult. Managing large numbers of machines securely was difficult or impossible.
Firewalls were introduced to provide a single point of protection for an orga
nization. Intrusion Detection Systems (IDS) were introduced to detect attacks
either from the outside or from the inside, providing another line of defense for
the increasingly difficult to manage firewalls.

In 1980, James Anderson produced a report entitled "Computer Security
Threat Monitoring and Surveillance" that sets up the framework for what we
now know as intrusion detection. Anderson (and later Denning) assumed that
user behavior was regular enough to permit statistical models that would equate
unusual (or anomalous) with malicious. In general, this is not true, but anomaly
based systems are still the focus of much research. The other primary area of
activity is signature based systems in which patterns of activity that match pre
viously known intrusions are sought. Finding the right pattern at an appropriate
level of abstraction is not easy and most truly new attacks are undetectable using
signatures.

There are a number of problems that beset both production and research
intrusion detection systems. These provide a context for the monograph and
include: 1) Lack of a fundamental theoretical basis for intrusion detection and
2) Poor understanding of environments in which intrusion detection systems
function. These lead to excessive false alarms, inappropriate training for ma
chine learning systems, poorly formed signatures for abuse detection and many
other problems. The monograph directly addresses several of these problems.
It is the result of a series of investigations that began late in the last century.
Although individual results have appeared in a variety of forums, they represent
a coherent body of work and a significant contribution to the field.

In the next few paragraphs, we will introduce each of these works and place
them in perspective. The technical details of each form a chapter in the mono
graph.

The Base-Rate Fallacy and the Difficulty of Intrusion Detection
Originally presented at RAID 99, this was my first introduction to the Dr.
Axelsson and his work. It deals with the problem of excessive false alarm rates,
a problem that plagues many intrusion detection systems.

The problem of false alarms is troubling. Every alarm requires investigation
and uses (typically human) resources. Alarms are often described in terms of
percentages of cases examined. If there are a lot of cases, even a low alarm
rate can require excessive resources to examine every alarm. While this is well

Foreword xv

known in epidemiology (where it is called the Base-Rate Fallacy), its impact
was not understood in the IDS community. As a result of this work, the IDS
community is now aware that very low intrusion rates require even lower false
alarm rates to prevent operator overload. The consequences of this observation
inform much of the subsequent work.

Visualizing Intrusions
Watching the Webserver represents a tour deforce in primary data analysis as
well as providing a beautiful example of an observational study. In many cases,
the quantity of data available defies individual analyses. Only by clustering and
abstraction can the data be reduced to manageable size.

Most researchers in this area are more interested in their algorithms than in
the data. In this work the analysis is properly viewed as a means to understand
ing the processes that produced the data. While the way the log reduction and
visualization were performed are significant contributions, some of the obser
vations in the discussion have the potential to be even more significant as they
provide a possible basis for defining a necessary property of certain intrusions.

Combining a Bayesian Classifier with Visualization
Understanding the IDS is an often overlooked aspect of research in this field.
Much of the current work in intrusion detection involves machine learning.
Even using carefully labeled data, classifiers often learn the right thing for the
wrong reasons. As far as I know, the approach here of using visualization with
interactive classification during the learning phase as an aid to understanding
both the data and the detector, is unique.

While the simple Bayesian detector used in the study is not particularly
strong as an IDS, the training approach can be extended to other detectors and
the results are impressive for the detector involved. This work is significant in
its own right, however, it also sets forth a significant agenda of future work.

Visualizing the Inner Workings of a Self Learning Classifier
Following the previous work with a more complex learning system is logical
next step. The detector used in this study is much more complex and its op
eration, as originally defined, opaque. Not knowing why a classifier made a
particular classification impedes training and hampers use.

The work performed here demonstrates, for this more complex case, that it
is possible to develop a visualization that gives insight into both the classifier
and the data allowing the "why" to be understood. As in the previous case,
the insights into the reasons why the detectors function as they do on the data
provides insight into the intrusive behavior.

xvi Foreword

Visualization for Intrusion Detection
Hooking the Worm is an interesting study of attempts to attack a small web

server. This work takes a neutral view of the dataset involved, developing
visual techniques for clustering and displaying web accesses. As we noted
earlier, clustering and abstracting allow us to reduce many individual records
to a manageable set of classes.

In this case, reducing the records to a few essential characteristics still allow
the production of useful patterns. The primary contribution of the work is
a simple mechanism for providing insight into system activity in a way that
supports classification into malicious and benign activity.

Beyond the Monograph
In addition to providing specific insights in a number of specific areas of in
trusion detection, a number of less tangible contributions are made. All of the
studies serve as exemplars of the utility of observational studies in computer se
curity. The astute reader will see that the work has benefited from deep thought
into the activities manifest in the data and tools studied. The resulting insights
are carefully and clearly set forth.

The works also show that there is no easy substitute for primary data collec
tion and analysis. Researchers who expect to have data sets handed to them,
should take note that significant results require hard and tedious work. In many
other fields, primary data collection and data management may consume as
much as 90% of a project's budget. There is no reason to expect observational
studies in computer security to be different.

In summary, this is work to be emulated by researchers as well as students. It
has been a great pleasure to correspond with Stefan Axelsson as he performed
the studies leading to the thesis this monograph is based on, and it is a pleasure
to be able to introduce the work to the readers of this monograph.

John MCHugh
Canada Research Chair
Director, Privacy and Security Laboratory
Dalhousie University
Halifax, Nova Scotia, Canada
July 2005

Preface

With the ever increasing use of computers for critical systems, computer se
curity, the protection of data and computer systems from intentional, malicious
intervention, is attracting much attention. Among the methods for defense,
intrusion detection, i.e. the application of a tool to help the operator identify
ongoing or already perpetrated attacks, has been the subject of considerable
research in the past ten years. A key problem with current intrusion detection
systems is the high number of false alarms they produce. This book presents
research into why false alarms are and will remain a problem, and proposes
to apply results from the field of information visualization to the problem of
intrusion detection. This approach promises to enable the operator to correctly
identify false (and true) alarms, and also aid the operator in identifying other
operational characteristics of intrusion detection systems. Four different vi
sualization approaches are presented, mainly applied to data from web server
access logs. The four approaches studied can be divided into direct and indirect
methods. In the direct approaches the system puts the onus of identifying the
malicious access requests on the operator by way of the visualization. For the
indirect approaches the state of two self learning automated intrusion detection
systems are visualized to enable the operator to examine their inner workings.
The aim here being to provide the operator with an understanding of how the
intrusion detections systems operate and whether that level of operation, and the
quality of the output, is satisfactory. Several experiments were performed and
many different attacks in web access data from publicly available web servers
were found. The visualization helped the operator either detect the attacks her
self and more importantly the false alarms.

Website
A website for the book can be found at "www.cs.chalmers.serdaveA/isBook".
Most importantly the website contains the more detailed figures from the book,
in full size and color.

http://www.cs.chalmers.serdaveA/isBook

Acknowledgments

This book is based on the PhD thesis of the first author, under the supervision
of the second. Even though writing the thesis on which this book was based
was at times a lonely task, the research was not done in isolation. Far from
it; I owe many more people my thanks than I can mention here. That said I
would still like to take the opportunity to mention a few people who have been
instrumental in helping to bring this work to completion.

While all my colleagues are too numerous to mention, I would especially like
to thank (in no particular order) Daniel Hedin, Ulf Norell, Nils Anders Daniels-
son, Tobias Gedell, Claes Nyberg and Thorbjöm Axelsson. I would be less
knowledgeable without having worked with you and I would certainly have
had a much drearier time doing it. My erstwhile climbing partner, now turned
colleague Dr. Rogardt Heldal deserves special mention, as he is put up with my
comings and goings and still managed to provide valuable insights over the past
few years. My erstwhile supervisor Prof. Erland Jonsson also deserves special
mention, as he was the one that put me on to the idea of applying visualisa
tion to the area of intrusion detection in the first place, many years ago now.
I would also like to thank previous and present colleagues at the department
of Computer Engineering here at Chalmers and at Ericsson where I have been
employed for the past few years.

Outside of Chalmers we would like to thank Prof. John M^Hugh for his
helpful comments and support on a number of aspects of the work presented
here, and to Spotfire inc for letting us use "Spotfire Decision Suite" for some
of our visualization experiments.

Last but not least are the two people without whose support this work would
not have got far. I am talking of course of my wife Hanna Tomevall who has
had to bear the brunt of the work keeping the family going this autumn, and our
son Oskar. In fact, Oskar's first proper two syllable word was "dat-oo" (clearly
legible Swedish for dator, i.e. computer), as in: "Oskar, where's daddy?", "Dat-
oo!" I know I have been an absent father at times when preparing the thesis

XX Acknowledgments

this book was based on, even when present in the flesh. Thank you Oskar for
not holding that against me.

Stefan Axelsson

Since Stefan did all the hard work, there are considerably fewer acknowledge
ments needed from my side. However, this work would not have been possible
without the support of the Department of Computer Science and Engineering at
Chalmers, and research grants from SSF (the Swedish foundation for Strategic
Research) and Vinnova (The Swedish Agency for Innovation Systems).

David Sands

Göteborg, August 2005

Chapter 1

INTRODUCTION

All science is either physics or stamp collecting.
Ernest Rutherford (1871-1937)

1. Context
In the early days of electronic computing, computer security was primarily

of interest in military circles. With the emergence of the Internet as a household
concept, computer security has become a universal concern. The general pub
lic has grown accustomed to hearing about the exploits of hackers and credit
card fraudsters on the evening news, and many have first-hand experience of
phishers, viruses, worms and the like. And as our dependence on computer
infrastructure increases, so do the financial and political incentives to exploit
security vulnerabilities. The computer crimes of yesterday, most of which were
little more than pranks, have come of age with the realization that there are huge
sums up for grabs for the enterprising criminal with a technological knack.

To counter these threats, engineering practices improve to become more se
curity aware, and security research develops new methods for the construction
of secure systems. So we might hope to reduce security flaws and vulnerabili
ties. But at the same time our systems are becoming ever more complex, so it
is clear that security vulnerabilities are here to stay. Thus our security defenses
must include mechanisms for dealing with and learning from security failures.

This book presents research into one principle of protecting valuable com
puter resources: surveillance, using information visualization to aid the opera
tor in understanding the security state of the monitored system, either directly
or indirectly, by providing insight into the operation of some intrusion detection
system.

2 Introduction

We continue this introductory chapter with a brief look at what we mean by
computer security, saving a more complete overview of intrusion prevention
and detection to Chapter 2.

We then present our rationale for applying the principle of information visual
ization to intrusion detection, together with a short introduction to visualization.

2. Computer Security
The computer security field is primarily concerned with protecting one par

ticular resource: data.
The value of data can be compromised in three ways, commonly referred to

as the CIA of computer security [CEC91].

1 Confidentiality Prevention of the unauthorized disclosure of information.

The value of much data relies on it being kept secret from prying eyes.
Violating this secrecy thus entails a breach of confidentiality.

2 Integrity Prevention of the unauthorized modification of information.

In some circumstances we may not be particular about the secrecy of our
data, but it remains absolutely crucial that the data not be tampered with. We
require a high level of trust in the accuracy of our data, i.e. for its integrity
to remain unquestioned.

3 Availability Prevention of the unauthorized withholding of information or
resources.

Our data should be available to us when, where and in the form we need it.
Data that is confidential and has the highest integrity will be of no use to us
if we cannot process it when the need arises. Thus it is imperative that our
data remains available to us at our convenience.

An increasingly relevant fourth factor is sometimes added [Mea93, Jon98]:

4 No unauthorized use, viz. that no unauthorized person should be allowed to
use the computing resource, even though such use in itself might not violate
any of the CIA requirements.

From a risk management perspective, it is easy see that such a person would
probably end up in a position from which further violations were possible -
including the use of our computing resources to violate the CIA requirements
of other systems, for example through participation in a distributed denial of
service attack.

Different owners of data make different decisions about the relative impor
tance of these factors. Three hypothetical scenarios will suffice as examples.
The first is that of a military entity, paranoid about confidentiality to the point

Rationale and Problem Statement 3

that it would rather blow up its own computer installations then let them fall
intact into the hands of the enemy. Integrity and availability play less of a role
in such a decision. The second is that of a bank. Although it is anxious that in
formation might leak into the wrong hands, it is more concerned with integrity.
That someone can learn the balance of an account is less of a concern than the
risk that someone could alter it, perhaps by adding a zero to the end. The third
is a relatively new and is that of an internet merchant who is mostly concerned
with the continued availability of her website as while she can tolerate the odd
leaked credit card number of one of her customers, she cannot tolerate having
her business shut down for any appreciable amount of time. The latter scenario
has become increasingly important in the last few years.

Many security measures can be employed to defend against computer intru
sions and other unauthorized tampering with protected resources, the establish
ment of a strong perimeter defense being only one possible measure. Another
method well established in the traditional security field is that of an intrusion
alarm coupled with a security response. A great deal of research has recently
gone into the idea of automated intrusion alarm for computer systems, a so-
called intrusion detection system, or IDS for short. We postpone a detailed
overview of intrusion detection until Chapter 2.

3. Rationale and Problem Statement
A significant problem with intrusion detection systems - one which we fo

cus on in Chapter 3 - is the high number of false alarms. -It has long been
known in security circles that ordinary electronic alarm systems should be cir
cumvented during the normal operation of the facility, when supervisory staff
are more likely to be lax because they are accustomed to false alarms [Pie48].
By analogy, burglar alarms operate under a very restricted security policy: any
activity whatsoever on the premises is suspicious. Intrusion detection systems
on the other hand are active when the computer system is in full operation,
when most activity is benign. In the shop lifting scenario however, an ordinary
burglar alarm would not be appropriate since there would be a multitude of nor
mal, benign activity (the shopkeeper even encouraging this). The shoplifting
problem is currently addressed among other things by surveillance, i.e. human
supervision of the potential shoplifters. The human, using her senses unaided,
is too expensive to employ directly, and therefore technology is brought to bear
in the form of video cameras, video recorders, etc.

Taking the analogy with surveillance more literally leads us to the central idea
of this book: the use of some form of information visualization to the intrusion
detection problem. The work presented in this volume explores the use of
simple techniques from the visualization field as means to aide the surveillance
of computer systems.

4 Introduction

Our methods are not aimed at the naive user however. The operator of any
intrusion detection system must have a rudimentary understanding of the assets
that need protection and common ways of attacking said assets. To assume
otherwise would be akin to airport security staff knowing nothing the dangers
of different types of firearms and sharp implements, and being oblivious to
the most common methods of evading detection. A metal detector, however
sophisticated, would not be of much use in such a situation, as the operator
would not be able to evaluate the output. That is not to say that the staff
necessarily would need to know how to build a metal detector. We aim for the
same level of sophistication of the users of our tools.

Thus the main point of the investigation outlined in this book is as follows:
given that false alarms are a problem with current approaches to intrusion detec
tion: in what ways can information visualization be utilized to aid the operator
in identifying false alarms?

4. Information Visualization
We briefly mention some of the basic concepts in the field of information visu

alization. The visualization techniques employed in this work are all fairly sim
ple, and build on well-known ideas. Good introductions to this area are [SpeOl]
and [CMS99]. This section borrows heavily from the latter.

The human mind's cognitive skills are limited. By cognition we mean "The
acquisition or use of knowledge" [CMS99, p. 6]. To overcome the shortcomings
of our limited cognitive skills, humans have invented external aids that help us
in cognitive tasks. These aids are often in graphical form (c.f. doing longhand
arithmetic using pencil and paper, where we aid limited short term memory by
keeping intermediate results as glyphs on paper). The use of the external world
in the aid in cognitive tasks is sometimes called "external cognition" [CMS 99,
p. 1]. The use of external aid is central to the effective utilization of the limited
cognitive skills of the human:

. . . visual artifacts aid though; in fact, they are completely entwined with cognitive
action. The progress of civilization can be read in the invention of visual artifacts,
from writing to mathematics, to maps to printing to diagrams, to visual computing.
As Norman says, "The real powers come from devising external aids that enhance
cognitive abilities." Information visualization is about just that—exploiting the dynamic,
interactive, inexpensive medium of graphical computers to device new external aids
enhancing cognitive abilities. It seems obvious that it can be done. It is clear that the
visual artifacts . . . have profound effects on peoples' abilities to assimilate information,
to compute with it, to understand it, to create new knowledge. Visual artifacts and
computers do for the minds what cars do for the feet or steam shovels do for the hands.
But it remains to puzzle out through cycles of system building and analysis how to build
net next generation of such artifacts. (Card et. al. [CMS99, pp. 5-6]).

Information visualization then is the use of computers to give abstract data
an interactive visual form. By abstract we mean that the data is non-physical

Overview of the book 5

in origin. One such origin of data that we deal with exclusively in this is log
data from computer systems, especially access log data from webservers.

The information visualization process can be divided into three distinct steps:

Data transformations map Raw Data, that is data in some idiosyncratic format into
Data Tables, relational descriptions of data extended to include metadata.

Visual mappings transform Data Tables into Visual Structures, structures that combine
spatial substrates, marks, and graphical properties. Finally,

View transformations create Views of the Visual Structure by specifying graphical
parameters such as position, scaling, and clipping.

User interaction controls parameters of these transformations, restricting the view to
certain data ranges, for example, or changing the nature of the transformation. The vi
sualizations and their controls are used in the service of some task. (Card et. al. [CMS99,
p. 17]).

As a research area, information visualization is now some twenty years old
(even though the visual presentation of data of course is much older) with
rapid development in the last ten years or so due to the advent of cheap per
sonal computers with substantial processing and graphics capabilities. This
thesis follows one trend in the visualization area, away from pure information
visualization studies with its goals of developing new generally applicable visu
alization strategies, towards application of the principles developed in the past
to new problem domains.

5. Overview of the book
The theme for this book can be viewed ^s false alarm suppression, i.e. how

do we make the system as a whole (including the operator) able to handle false
alarms? After a brief introduction to the topic of intrusion detection in Chapter
2, the third chapter provides a key piece of motivation for the main topic of
this book: it shows why false alarms are, and will always be, a problem, by
explaining the issue of false alarms using the base-rate fallacy. The following
chapters investigate the application of information visualization to the intru
sion detection problem and how this helps the operator more easily identify
false alarms (and detect true alarms). First the visualization of the output of an
anomaly detection system—applied to unique web access request strings—is
studied in Chapter 4. This study is successful but has drawbacks which are ad
dressed in the following two chapters (Chapter 5 and Chapter 6) which develop
successively more complex directed self learning detectors with integrated vi
sualization to enable the operator to detect false (and true) alarms but also to
see a visual representation of the training process, and interactively alter it. The
last chapter (Chapter 7) then picks up where the previous left off by presenting
a method for correlation of malicious web access request strings once they have
been detected (by the previous methods for example) so that the operator may
identify the entities making the requests.

6 Introduction

We conclude this introduction with a more detailed overview of the Chapters.

Chapter 2: An Introduction to Intrusion Detection
The reader unfamiliar with the area of computer security and intrusion detection
in particular will find an introduction to the area. The Chapter covers some basic
terminology and concepts in the area of intrusion prevention and detection, and
presents the typical architecture of an intrusion detection system.

Chapter 3: The Base-Rate Fallacy and the Difficulty of Intru
sion Detection
Many different demands can be made of an intrusion detection system. An
important requirement is that it be effective, in other words that it should detect
a substantial percentage of intrusions into the supervised system while still
keeping the false alarm rate at an acceptable level.

This chapter demonstrates that intrusion detection in a realistic setting is
perhaps harder than previously thought. This is due to the base-rate fallacy
problem, because of which the factor limiting the performance of an intrusion
detection system is not the ability to identify intrusive behaviour correctly, but
rather its ability to suppress false alarms. A very high standard, less than
1/100000 false alarms per 'event' given the stated set of circumstances, has to
be reached for the intrusion detection system to live up to these expectations as
far as effectiveness is concerned. The cited studies of intrusion detector perfor
mance that were plotted and compared indicate that anomaly-based methods
may have a long way to go before they can reach these standards because their
false alarm rates are several orders of magnitude larger than what is required.
Turning to the case of signature based detection methods the picture is less
clear. One detector performs well in one study—and meets expectations—^but
is much less convincing in another, where it performs on a par with the anomaly-
based methods studied. Whether some of the more difficult demands, such as
the detection of masqueraders or the detection of novel intrusions, can be met
without the use of anomaly-based intrusion detection is still an open question.

It should be noted that the assumptions made above hinge on the operator's
ability to deal with false alarms. Studies in psychology indicate that humans
are typically ill equipped to effectively supervise complex systems in an envi
ronment where the monitoring systems produce alarms that turn out not to be
real causes for concern [RDL87, WH99]. These result indicate that the more
complex the system, and the less the human feels aware of how the system
is operating (i.e. to what degree it seems 'automagical') the less effective the
operator becomes in correctly identifying problematic situations and taking the
necessary corrective action. The results seem remarkably stable regardless of
the type of system under study, whether in the process industry (paper mill, steel

Overview of the book 1

mill, aluminum smelting facility etc.) [RDL87], or air craft cockpit or nuclear
power plant control room [WH99].

Thus it is reasonable to assume that if we cannot reduce the false alarm
rate of current intrusion detection systems, it would be beneficial to provide the
operator with tools to help her address them, i.e. by identifying them, discarding
them, and ultimately correcting the intrusion detection system that produced
them. This will in effect provide the operator with more insight into how the
intrusion detection system is operating. Thus Chapter 3 provides the rationale
for addressing the false alarm problem.

5.1 Chapter 4: Visualizing Intrusions: Watching the
Webserver

Following the rationale in the previous chapter, applying visualization to the
output of a traditional anomaly based intrusion detection system could help the
operator make sense of the output. The aim is to help the operator differentiate
false alarms from the true alarms. This could combine advantages of both
methods while mitigating their drawbacks, namely:

Anomaly detection advantage: being able to detect novel intrusions, i.e. previ
ously undetected and unknown methods of intrusion; disadvantages: having
a high false alarm rate as consequence of detecting unusual behavior instead
of just known violations.

Visualization advantage: increasing the operator's insight into the data be
ing presented; disadvantage: not being able to display the typically large
amounts of data that intrusion detection systems deal with in a meaningful
way.

To this end, we describe how a very simple anomaly detection based log reduc
tion system with a 3D visualization component was applied to the realistically
sized log of a web server. The log was from the month of November of 2002 and
came from the webserver of the Computer Science Department at Chalmers.
It contained around 1.2 million accesses, comprised of about 220000 unique
access requests.

We describe an anomaly based log reduction scheme which works by cutting
up the unique requests into elements as per the HTTP specification, and then
counting the frequencies of occurrences of the elements, assigning a score to
the request as a whole by calculating the average of the element scores. A low
score signifies that the request was comprised of unusual elements, and hence
anomalous in some sense. It should be noted that the element frequencies were
maximized at a frequency of 1000, so as to prevent a small set very frequent
elements from completely dominating the score of those access requests of
which they were part. The cut-off score was motivated visually. When applying

8 Introduction

an anomaly based intrusion detection system it would be typical to settle on a
threshold score and to mark all the requests with a lower score as anomalous.
However, instead we choose as many of the lowest scoring access requests as
we can handle with the visualization component, irrespective of their score. So
strictly speaking we in fact implement an anomaly detection based log reduction
scheme.

The visualization component then performed the same separation into ele
ments as the log reducer, but instead visualized the elements as a general graph,
with directed edges connecting the elements. I.e. given an access request such as
"GET /index.html HTTP/1.0", it would first be cut up into the nodes: "GET",
"index.html", "HTTP" and "1.0", and then the edges between "GET" and
"index.html" etc. would be added. Note that the resulting graph is a general
graph (e.g. not necessarily acyclic etc.), where a node may be a part of several
access requests at different places. The resulting (mostly treelike) structure was
visualized as a 3D graph and even while the first feature that stood out turned
out to be an attack, later investigation indicated that the visualization was better
suited to help identify benign requests than malicious requests. This was just as
well, as the majority of the log was comprised of benign access requests. Even
though a direct comparison between the false alarm rates defined in Chapter 3
and the results in this chapter was impossible, the false alarm rate was orders
of magnitude worse than required in Chapter 3 but the visualization component
was effective in helping the operator identifying the false alarms and hence by
a process of elimination, the true alarms.

Many interesting attempted intrusions were found in the data and were di
vided into some seven classes. While the log reduction scheme did not have
a perfect detection rate, it did not miss any one class completely, so evidence
of all types of attacks was preserved. To ascertain the detection rate, all the
220000 access requests were classified by hand, an extremely tedious task.

Chapter 5: Combining a Bayesian Classifier with Visualiza
tion: Understanding the IDS
While the method that is presented in Chapter 4 is workable it does have some
drawbacks. The main drawback pertains to the log reduction scheme. While
it works as it stands, it does so without lending the user any real insight into
its operation, the graphs motivating the cut off frequencies notwithstanding.
Furthermore, it cannot be configured by the user, should e.g. the visualization
component have given any insight into how its performance could be improved.
Also it is a pure anomaly based system and (as we discuss in Section 2.4) for
better detection accuracy an intrusion detection system ought to have a model
of both benign and malicious behavior.

An anecdote from the chapter serves to motivate the approach taken:

Overview of the book

When the author first started using the Bayesian spam filter recently added to the
Mozilla ("http://www.mozilla.org") email client, the filter seemed to learn the difference
between spam and non-spam email with surprisingly little training. It was not until some
rather important email was misclassified as 'spam' that it was realized that what the filter
had actually learnt, was not the difference between spam and non-spam, but between
messages written in English and the author's native tongue. In fairness given a few more
benign examples of English messages the system was successfully retrained and was
again correctly classifying email, but some rudimentary insight into exactly what the
system had learnt would have made us more skeptical of the quality of the classification,
even though the classifier seemed to operate perfectly judging by the output.

To attempt to address this situation, a naive Bayesian classifier was devel
oped. It was modeled after the now common spam filters first popularized by
Paul Graham [Gra02]. The main reasons for this choice was that these clas
sifiers have had some success in the similar field of spam detection and they
also meet the requirement that they build a complete model given the available
evidence, taking both benign and malicious clues into account. In fact the clas
sifier cannot operate without both benign and malicious examples. In order to
explain how the visualization of the classifier works we will first have to go
into a bit more detail explaining how the classifier actually operates. Naive
Bayesian classification revolves around a scenario where that which we wish to
classify can be divided into records (i.e. pieces of mail in the case of spam clas
sification) that can be marked as benign or malicious as a whole. The records
must furthermore be divisible into tokens (typically words in the case of spam
classification, but also message headers etc). Bootstrapping the classifier con
sist of feeding it records the user has marked as either benign or malicious. The
principle behind the classifier is thus one of directed self learning. In more
detail, the classifier operates by counting the frequencies of occurrence of the
tokens that makes up the good and bad records. The frequency counts for each
token can be interpreted (by the application of some conversion formula) as a
probability indicating the relative maliciousness of the token, i.e. the probability
that the token indicates a bad context. Let us call this probability Pi (for local
probability). The probability that the same token is indicative of a good record
is then of course simply I — Pi. In order to classify a previously unseen record
the classifier weighs together the evidence provided by the local probabilities
of the tokens that makes up the record, using a neutral 0.5 probability if the
token has not been seen previously. This result in a total probability for the
record as a whole that can be interpreted analogously with the local probability.
The weighing is performed by a naive version of the Bayesian chain rule. As
the local probabilities do not actually take the dependent probabilities of the
other tokens into account (as that would lead to a state explosion that would be
prohibitively costly in terms of memory and processing resources) the classi
fier earns the moniker naive. It is also worth noting that in order for Bayes's

http://www.mozilla.org

10 Introduction

theorem to hold the probabilities taken into account ought to be independent of
each other. This restriction is often relaxed in practice.

Given this classifier, one realizes that the learning it does is condensed into
the local probabilities. Therefore it was decided to try the heatmap visualization
principle. The heatmap visualization works by mapping a continuous variable
onto the color wheel. From green via yellow, to red. In this case we map local
probability from 0.0 being green to 1.0 being red, with 0.5 indicated by yellow
onto the background of the textual representation of the tokens. This provides
the operator visual insight into the evidence upon which the classifier is basing
its conclusion. In the prototype developed, the records are displayed one to a
line with the total score also displayed (heatmapped) to the left of the record.
As the resulting visualization can also lend insight into the training process
and not merely the output of the classifier once it is trained, a natural step is
to make it interactive. The user can mark a record benign or malicious and
immediately see the effect this update has on the classifier as a whole through
the visualization of the record and other records also visible. To help the user
keep track of the training status of the record, a colored marker is placed first
on the line to indicate whether this record has been trained as "good" or "bad"
(or not part of training at all). In order to aid in training, the operator can sort
the display according to training status e.g. to easily identify records that have
been trained but still are misclassified. To effect actual detection the operator
can import new records and sort on total score, which will single out the records
most likely to be indicative of maUcious activity.

In order to test the complete prototype, named Bayesvis, it was trained on
the web server access request data described in Chapter 4. A training strategy
of train until no false positives was adopted, i.e. the system was first trained on
all the previously identified malicious requests and then enough of the benign
requests were trained to make all the benign training request have an overall
score lower than 0.5, signifying that they are benign. The resulting classifier
was then tested on the available logs from the same web server for the months
following November, i.e. December through February. While the December log
contained on the order of the same number of access requests, many of these
were identical to the November log and were removed from it. The same applied
for the following logs, i.e. many of the requests in the January log were identical
to requests seen in either the November or December logs. Thus the actual logs
the classifier was tested on decreased in size as the experiment wore on. The
results were promising, the number of false alarms was reasonable and because
of the visualization they were quite easily identifiable, as the operator could
(the author would argue) see what tokens the classifier found objectionable. An
access request consisting of predominantly green tokens with one or two red
mixed in (perhaps as arguments to cgi scripts) would almost certainly indicate a
false alarm. As the operator has knowledge of the meaning of the actual tokens

Overview of the book 11

in context (something the classifier itself is devoid of) she is poised to make a
qualitative evaluation of the output of the classifier. The detection capabilities
were also sufficient: the detector clearly managed to generalize its evidence
from the training session to detect variations of previously known attacks.

Chapter 6: Visualizing the Inner Workings of a Self Learn
ing Classifier: Improving the Usability of Intrusion Detection
Systems

A problem with the classifier described in Chapter 5 is that it is simple (simplistic
even) in that it neither takes the order nor the context of the tokens into account.
While in fairness the naive Bayesian classifier shows sufficient performance on
the data with which it was tested, there is data on which it cannot be tested given
the above mentioned limitations. Furthermore, as it did not perform flawlessly
there is room for improvement.

In order to address these two points a more complex classifier based on
two popular spam filters: CRM-114 [Yer04] and Spambayes [MW04] was
developed. Our classifier works with the same notions of tokens, records,
directed training etc. as the naive Bayesian classifier in Chapter 5. It works by
sliding a window of length six over the input and considering as features all the
possible subsequences of the tokens in the window considering skips, i.e. the
order of the tokens is preserved, but they may not be counted as present. E.g.
the window "The quick brown fox jumps over", gives rise to (among others)
the features "The <skip> <skip> fox jumps over" and "<skip> quick brown
fox jumps over", etc. until all possible subsequences have been generated.
These features are first processed much as the tokens are in the naive Bayesian
classifier, i.e. their presence in benign and malicious contexts are counted and
the statistics allowed to influence a local probability. In this case the formula
of the local probability is more sophisticated, giving less weight to features
for which low counts have been observed (i.e. for which there is less total
evidence). However, as this would give equal weight to features that have many
tokens present (i.e. few skips) as to features that have fewer tokens present, a
superincreasing weight function is applied that modifies the local probabilities
according to the formula: W = l/2^(^~^\ I.e. a feature with more tokens
present can outweigh all of its "children"—i.e. with skips in the positions that
the feature has tokens—combined. This is believed to make the classifier non
linear i.e. a classifier that could e.g. learn that 'A' and 'B' in isolation were
both indicative of a malicious context, but 'AB' together was indicative of a
good context, something the naive Bayesian classifier could not. Further study
is required to confirm whether this scheme could indeed lead to a classifier that
is non-linear. So far our classifier has been solely influenced by the CRM-114
classifier.

12 Introduction

Given the local probabilities they have to be combined into an overall score
indicating the probability the record is indicative of malicious activity much as
in Chapter 5. As in the SpamBayes classifier, to accomplish this a chi square test
(or rather two tests) was applied to the local probabilities. The local probabilities
of the features are tested against the two hypotheses of them being indications
of benign or malicious behaviour, thus resulting in two probabilities. These are
then combined into one probability, taking the support for both hypotheses into
account. For the situations where there is either strong evidence of malicious
activity and none of benign (or vice versa) the situation is straightforward giving
rise to the probability of either 1.0 or 0.0 respectively. The situation where we
do not have much evidence of either gives rise to the overall score of 0.5. The
special case where we have equal evidence of both malicious and benign activity
is interesting though, as that must also give rise to the overall score of 0.5, but
of course still being a very different situation from the case where we do not
have much evidence of either kind. As a result, all three probabilities of the
classifier are returned to the application for visualization.

Visualizing this classifier is much more problematic than the naive Bayesian
classifier as there are many more features and a more complex decision pro
cess to take into account. Since we still deal with probabilities, some form of
heatmap could still be applied. But now no single token has a score, and the
simple line per record display of Bayesvis cannot be applied directly. Thus
it was decided to apply the principle of overview and detail, whereby the data
is displayed in progressively more detail as the user selects various regions of
interest.

In order to evaluate the resulting prototype, called Chi2vis, it was trained on
and applied to the November 2002 log as that had been fully evaluated for benign
and malicious accesses. As is customary in classifier research, the system was
trained on a randomly chosen ten percent subset from the seven classes of attacks
(though at minimum one request) and the benign requests. The classifier was
then evaluated on the remaining data for true and false positives and negatives.
The resulting detector faired well, and the visualization helped the operator
identify false alarms, more so than Bayesvis, in that Chi2vis lets the operator see
the (limited) context in which the training took place so that the operator gained
extra insight into what the detector found objectionable and why that may not
hold in the particular case. Chi2vis was also tested on traces of operating system
calls. Unfortunately there was really not enough data available to train Chi2vis
sufficiently but it still managed to correctly detect at least some (visually very
uninteresting) bad traces, even though the performance of Chi2vis on this data
set was not spectacular. To complete the evaluation, Bayesvis was then tested
under the same circumstances to make a comparison possible. While Bayesvis
required less benign training before the train until no false positives strategy
was fulfilled, this was reflected in a higher false alarm rate and lower detection

Overview of the book 13

rate. Bayesvis faired almost universally worse on all aspects in comparison to
Chi2vis.

Chapter?: Visualization for Intrusion Detection: Hooking the
worm.
This chapter is based on our first foray in the field of applying visualization to
intrusion detection[Axe03]. Access requests (in this case the complete records,
not just the unique request strings) to a small personal web server are studied
with a visualization method called the parallel coordinate plot [Ins97]. The
hypothesis here is that the operator should be able to detect malicious accesses
to the webserver—most notably from the various worms that bounce around the
internet—and be able to correlate them to each other. It should be noted that the
web server in this case was much smaller than the ones studied in the previously
summarized chapters, and did not have nearly the same number of accesses to it.
It furthermore did not have much in the way of benign access requests. Further
complicating the study of this web server, it used authentication for all accesses
and hence all worms trying to access it got an error return. To accomplish
the detection and classification of the worms (and other entities) that accessed
the server, a selection of variables that did not leak information (directly or
indirectly) about the authentication process was visualized using the parallel
coordinate plot. The parallel coordinate plot maps a point in multidimensional
space onto the plane by placing all the axes vertically and equidistant and
plotting the components of the point onto each respective axis, connecting the
components with straight line segments. The detection and identification was
achieved via a trellis plot, i.e. one of the variables (the unique access request
string as in the previous chapters) was held constant and a separate parallel
coordinate plot generated for each unique access request. This meant that
the patterns of access for the various unique request strings could be visually
correlated to each other, i.e. entities making different requests but at similar
times, from similar systems etc. could be identified and the access requests
correlated.

Relatively little support for the hypothesis that malicious entities could be
detected was found. While many of the worms showed markedly different
access patterns from the benign patterns it is difficult to say how that would
hold up given a larger web site with more benign traffic. The malicious access
requests (and the benign) could be successfully correlated to each other though.
In fact, one entity making access requests very similar to then popular worms
was markedly different visually and turned out to be a then largely unknown
instance of the application of a tool for breaking into web sites. Most security
sources erroneously referred to this access request as coming from the worm.
The visualization made it easy to differentiate this access pattern from the
others. Several other malicious access patterns were found. As the previous

14 Introduction

work that dealt with web access requests stopped when the types of malicious
accesses were found the method investigated in this work nicely complements
those methods in that with the approach presented here the investigation could
continue and the actual entities making the request could be identified.

However, in the version of paper on which the chapter is based, one malicious
pattern slipped by. This was because the pattern consisted of two separate
unique access request strings and only a few accesses overall and was therefore
similar to the benign traffic to the web server. This pattern turned out to be from
the same tool as mentioned in the previous paragraph, but run with different
options. The reason for this pattern escaping the author the first time around
is illustrative as it makes the main drawback of all visualization work clear:
any visualization can only be as successful as the person viewing it. If that
person falters thorough inattentiveness (perhaps brought on by tiredness, stress
or boredom for example) then the visualization cannot ameliorate the situation.
Putting the human operator back into the driver's seat, so to speak, has both the
benefit of putting the human in control of the events, but also the drawback of
having to come to terms with human fallibility.

Chapter 2

AN INTRODUCTION TO
INTRUSION DETECTION

1. Intrusion Prevention
Several methods are available to protect a computer system or network from

attack. A good introduction to such methods is [HB95], from which this section
borrows heavily. The paper lists six general, non-exclusive approaches to anti-
intrusion techniques: pre-emption, prevention, deterrence, detection deflection,
and countermeasures (see Figure 2.1):

System perimiter

Figure 2.1. Anti-intrusion techniques (from [HB95])

1 Pre-emption To strike against the threat before it has had a chance to mount
its attack, in the spirit of: "Do unto others, before they do unto you." In a
civilian setting, this is a dangerous and possibly unlawful approach, where
innocent—and indeed not so innocent—bystanders may be harmed.

16 An Introduction to Intrusion Detection

2 Prevention To preclude or severely limit the likelihood of a particular in
trusion succeeding. One can, for example, elect to not be connected to the
Internet if one is afraid of being attacked by that route, or choose to be
connected via some restriction mechanism such as a firewall. Proving your
software free of security defects also falls under this heading. Unfortunately,
this can be an expensive and awkward approach, since it is easy to throw
the baby out with the bath water in the attempt to prevent attacks. Inter
nal prevention comes under the control of the system owner, while external
prevention takes place in the environment surrounding the system, such as
a larger organization, or society as a whole.

3 Deterrence To persuade an attacker to hold off his attack, or to break off an
ongoing attack. Typically this is accomplished by increasing the perceived
risk of negative consequences for the attacker. Of course, if the value of the
protected resource is great, the determined attacker may not be scared off
so easily. Internal deterrence can take the form of login banners warning
potential internal and external attackers of dire consequences should they
proceed. External deterrence could be effected by the legal system, with
laws against computer crime and the strict enforcement of the same.

4 Detection To identify intrusion attempts, so that the proper response can be
evoked. This most often takes the form of notifying the proper authority.
The problems are obvious: the difficulty of defending against a hit-and-run
attack, and the problem of false alarms, or failing to sound the alarm when
someone surreptitiously gains, or attempts to gain, access.

5 Deflection To lure an intruder into thinking that he has succeeded when in
fact he has been herded away from areas where he could do real damage.
The main problem is that of managing to fool an experienced attacker, at
least for a sufficient period of time.

6 Countermeasures To counter actively and autonomously an intrusion while
it is in progress. This can be done without the need for detection, since the
countermeasure does not have to discriminate—although it is preferable if
it can—^between a legitimate user who makes a mistake and an intruder who
sets off a predetermined response, or "booby trap".

The reasons for our desire to employ the principle of surveillance are much
the same as in the physical security arena: we wish to deploy a defence in depth;
we do not believe in the infallibility of the perimeter defence; when someone
manages to slip through or even attempts to attack we do not want them to have
undetected free reign of the system; for technical reasons we perhaps cannot
strengthen our perimeter defences (lack of source code etc.); we wish to defend
not only against outsiders, but also against insiders, those that already operate
within the perimeter, etc.

Intrusion Detection 17

2. Intrusion Detection
As the principle of surveillance stems from the application of intrusion de

tection systems to computer security it is fitting to start with a few definitions
and introduction to that area of study. Research in intrusion detection is the
study of systems that automatically detect intrusions into computer systems.
They are designed to detect computer security violations made by the follow
ing important types of attackers:

• Attackers using prepackaged exploit scripts. Primarily outsiders.

• Automated attacks originating from other computers, so called worms.

• Attackers operating under the identity of a legitimate user, for example by
having stolen that user's authentication information (password). Outsiders
and insiders.

• Insiders abusing legitimate privileges, etc.

Giving satisfactory definitions to there terms turns out to be problematic.
Although most computer users could easily describe what they do not want to
happen with their computers, finding strict definitions of these actions is often
surprisingly difficult. Furthermore, many security problems arise between the
ordinary every day definitions that we use to communicate security, and the
strict definitions that are necessary to research. For example the simple phrase
"Alice speaks to Bob on the freshly authenticated channel" is very difficult to
interpret in a packet-sending context, and indeed severe security problems have
arisen from confusion arising from the application of such simple models such
as "speaking" in a computer communications context [GolOO]. That numerous,
spectacular mistakes have been made by computer security researchers and
professionals only serves to demonstrate the difficulty of the subject.

2.1 Definitions
That said, a definition of what we mean by intrusion and other related terms

remains essential, at least in the context of intrusion detection:

Intrusion The malicious violation of a security policy (implied or otherwise)
by an unauthorized agent.

Intrusion detection The automated detection and alarm of any situation where
an intrusion has taken, or is about to take place. (The detection must be
complemented with an alert to the proper authority if it is to act as a useful
security measure.)

We will consider these definitions in greater detail in the following para
graphs:

18 An Introduction to Intrusion Detection

Malicious. The person who breaks into or otherwise unduly influences our
computer system is deemed not have our best interests at heart. This is an
interesting point, for in general it is impossible for the intrusion detection system
to decide whether the agent of the security violation has malicious intent or not,
even after the fact. Thus we may expect the intrusion detection system to raise
the alarm whenever there is sufficient evidence of an activity that could be
motivated by malice. By this definition this will result in a false alarm, but in
most cases a benign one, since most people do not mind the alarm being raised
about a potentially dangerous situation that has arisen from human error rather
than malicious activity.

Security Policy. This stresses that the violations against which we wish to
protect are, to a large extent, in the eyes of the owner of the resource being
protected (in western law at least). Other legitimate demands on security may
in future be made by the state legislature. Some branches of the armed services
are already under such obligations, but in the civilian sector few (if any) such
demands are currently made. In practice security policies are often weak,
however, and in a civilian setting we often do not know what to classify as
a violation until after the fact. Thus it is beneficial if our intrusion detection
system can operate in circumstances where the security policy is weakly defined,
or even non-existent. One way of circumventing this inherent problem is for
the supplier of the intrusion detection system to define a de facto security policy
that contains elements with which she hopes all users of her system will agree.
This situation may be compared with the law of the land, only a true subset of
which is agreed by most citizens to define real criminal acts. It goes without
saying that a proper security policy is preferable. This ought to be defined as
the set of actions (or rather principles) of operation that are allowed, instead of
in the negative for best security.

Unauthorized Agent. The definition is framed to address the threat that comes
from an unauthorized agent, and should not be interpreted too narrowly. The
term singles out all those who are not legitimate owners of the system, i.e., who
are not allowed to make decisions that affect the security policy. This does not
specifically exclude insiders i.e. people who are authorized to use the system to
a greater or lesser extent, but not authorized to perform all possible actions. The
point of this distinction is that we do not attempt to encompass those violations
that would amount to protecting the owner from himself. To accomplish this
is, of course, both simple and impossible: simple in the sense that if the owner
makes a simple legitimate mistake, a timely warning may make him see his
error and take corrective action; impossible, in that if the person who legally
commands the system wishes to destroy or otherwise influence the system, there
is no way to prevent him, short of taking control of the system away from him.

Intrusion Detection 19

in which case he no longer "legally commands the system." When all is said
and done, trust has to be placed in an entity, and our only defense against this
trust being abused is to use risk management activities external to the intrusion
detection system. It is a difficult question as to whether we should consider
non-human attackers such as other computers to be agents in themselves, or
merely tools acting on the behalf of some other agent. We will not delve more
deeply into such questions here.

Automated Detection and Alarm. The research into intrusion detection has
almost exclusively considered systems that operate largely without human su
pervision. An interesting class of systems that has not been studied to any
significant degree (the present book excepted) are those that operate with a
larger degree of human supervision, placing so much responsibility on the hu
man operator that she can be thought of as the detection element proper (or at
least a significant part of it). Such systems would support the human in ob
serving and making decisions about the security state of the supervised system;
a 'security camera' for computer systems. Continued reliance solely on fully
automated systems may turn out to be less than optimal.

Delivered to the Proper Authority. It cannot be overemphasized that the
alarm must be delivered to the proper authority—henceforth referred to as the
Site Security Officer or SSO—in such a manner that the SSO can take action.
The ubiquitous car alarm today arouses little, if any, response from the public,
and hence does not act as an effective deterrent to would-be car thieves. Thus the
SSO's response, which may or may not be aided by automatic systems within
the intrusion detection system itself, is a crucial component in the fielding of
intrusion detection systems. There has been little research, even in the simpler
field of automated alarms, into how to present information to the SSO so that
she can make the correct decision and take the correct action. It is important that
the authority that is expected to take corrective action in the face of computer
security violations—keeping in mind that such violations often originate "in
house"—really has the authority to take the appropriate action. This is not
always the case in a civilian setting.

Intrusion has Taken Place. The phrase "any situation where an intrusion has
taken place" may seem self-evident. However, there are important questions
over the exact moment when the intrusion detection system can detect the
intrusion. It is clearly impossible in the general case to sound the alarm when
mere intent is present. There is a better chance of raising the alarm when
preparatory action is taking place, while the best chance comes when a bona
fide violation has taken place, or is ongoing. The case where we consider an
intrusion which is "about to take place" is interesting enough to warrant special

20 An Introduction to Intrusion Detection

treatment. In military circles this falls under the heading of indication and
warning', there are sufficient signs that something is imminent to ensure that
our level of readiness is affected. In a computer security context, the study
of such clues, many of which are of course not "technological" in nature, is
not far advanced. It is an important subject, however, since it actually gives
us the opportunity to ward off or otherwise hinder an attack. Without such
possibilities, an alarm can only help to reduce the damage after the fact, or can
only function as a deterrent.

2.2 Intrusion Detection Systems
The study of intrusion detection is today some twenty five years old. The

possibility of automatic intrusion detection was first put forward in James
Anderson's classic paper [AndSO], in which he states that a certain class of
intruders—the so-called masqueraders, or intruders who operate with stolen
identities—could probably be detected by their departures from the set norm
for the original user. Later the idea of checking all activities against a set
security policy was introduced.

We can group intrusion detection systems into two overall classes: those
that detect anomalies, hereafter termed anomaly detection systems, and those
that detect the signatures of known attacks, hereafter termed signature based
systems. Often the former automatically forms an opinion on what is 'nor
mal' for the system, for example by constructing a profile of the commands
issued by each user and then sounding the alarm when the subject deviates
sufficiently from the norm. Signature systems, on the other hand, are most
often programmed beforehand to detect the signatures of intrusions known of
in advance.

These two techniques are still with us today, and with the exception of hybrid
approaches nothing essentially new has been put forward in this area. Sec
tion 2.4 will explain these two approaches in terms of detection and estimation
theory.

2.3 An Architectural Model of Intrusion Detection Systems
Since the publication of Anderson's seminal paper [AndSO], several intrusion

detection systems have been invented. Today there exists a sufficient number of
systems in the field for one to be able to form some sort of notion of a 'typical'
intrusion detection system, and its constituent parts. Figure 2.2 depicts such a
system. Please note that not all possible data/control flows have been included
in the figure, but only the most important ones.

Any generalised architectural model of an intrusion detection system would
contain at least the following elements:

Intrusion Detection 21

SSO response to intrusion

i
Monitored
system

•f 1
• v . .
1 ^
1
1 \ \ \

Audit
collection

\ \ \
s \

— >

Reference
data

" ^ ^

/ >.
Audit
storage

^
J

1

> ^
J Processing
1 (Detection)

^ 1 ^ \ T Y

[Configuration
[data

^ ~ ^

Active/Processing
data

y

"^
Alarm

•
•

SSO

Active Intrusion response^ ^ - ' '

Figure 2.2. Organisation of a generalised intrusion detection system

Audit collection Audit data must be collected on which to base intrusion de
tection decisions. Many different parts of the monitored system can be used
as sources of data: keyboard input, command based logs, application based
logs, etc. In most cases network activity or host-based security logs, or both,
are used.

Audit storage Typically, the audit data is stored somewhere, either indefi
nitely^ for later reference, or temporarily awaiting processing. The volume
of data is often exceedingly large^, making this is a crucial element in any
intrusion detection system, and leading some researchers to view intrusion
detection as a problem in audit data reduction [Fra94, ALGJ98]

Processing The processing block is the heart of the intrusion detection system.
It is here that one or many algorithms are executed to find evidence (with
some degree of certainty) in the audit trail of suspicious behavior. More will
be said about the detector proper in Section 2.4.

Configuration data This is the state that affects the operation of the intrusion
detection system: how and where to collect audit data, how to respond

^Or at least for a long time—perhaps several months or years—compared to the processing turn around time.
^The problem of collecting sufficient but not excessive amounts of audit data has been described as "You
either die of thirst, or you are allowed a drink from a fire hose."

22 An Introduction to Intrusion Detection

to intrusions, etc. This is therefore the SSO's main means of controlling
the intrusion detection system. This data can grow surprisingly large and
complex in a real world intrusion detection installation. Furthermore, it
is relatively sensitive, since access to this data would give the competent
intruder information on which avenues of attack are likely to go undetected.

Reference data The reference data storage stores information about known
intrusion signatures—for misuse systems—or profiles of normal behavior—
for anomaly systems. In the latter case the processing element updates the
profiles as new knowledge about the observed behavior becomes available.
This update is often performed at regular intervals in batches. Stored in
trusion signatures are most often updated by the SSO, as and when new
intrusion signatures become known. The analysis of novel intrusions is a
highly skilled task. More often than not, the only realistic mode for operat
ing the intrusion detection system is one where the SSO subscribes to some
outside source of intrusion signatures. At present these are proprietary. In
practice it is difficult, if not impossible, to make intrusion detection sys
tems operate with signatures from an alternate source, even though it is
technically feasible [LMPT98].

Active/processing data The processing element must frequently store inter
mediate results, for example information about partially fulfilled intrusion
signatures. The space needed to store this active data can grow quite large.

Alarm This part of the system handles all output from the system, whether
it be an automated response to suspicious activity, or more commonly the
notification of a SSO.

2.4 Explaining Intrusion Detection From the Perspective of
Detection and Estimation Theory"̂

Research into the automated detection of computer security violations is
hardly in its infancy, yet little comparison has been made with the established
field of detection and estimation theory (one exception being [LMSOO]) the
results of which have been found applicable to a wide range of problems in
other disciplines. In order to explain the two major approaches behind intrusion
detection principles we will attempt such a comparison, studying the problem
of intrusion detection by the use of the introductory models of detection and
estimation theory.

"̂ This section is based on [AxeOOb].

Intrusion Detection 23

Classical Detection Theory
The problem of detecting a signal transmitted over a noisy channel is one of

great technical importance, and has consequently been studied thoroughly for
some time now. An introduction to detection and estimation theory is given
in [Tre68], from which this section borrows heavily.

" N

Probabilistic
transition

mechanism
s J

1 Observation
\ Space

Decision V
ruie •

r^^
V ^

„j^ Decision

Figure 2.3. Classical detection theory model

In classical binary detection theory (see Figure 2.3) we should envisage a
system that consists of a source from which originates one of two signals, HO
or HI, for hypothesis zero and one respectively. This signal is transmitted
via some channel that invariably adds noise and distorts the signal according
to a probabilistic transition mechanism. The output—what we receive—can
be described as a point in a finite (multidimensional) observation space, for
example x in Figure 2.3. Since this is a problem that has been studied by
statisticians for some time, we have termed it the classical detection model.
Based on an observation of the output of the source as transmitted through
the probabilistic transition mechanism, we arrive at a decision. Our decision
is based on a decision rule; for example: Ts or is not x in X,' where X is
the region in the observation space that defines the set of observations that we
believe to be indicative of HO (or HI) (see Figure 2.3). We then make a decision
as to whether the source sent HO or HI based on the outcome of the comparison
of a; andX.

Note that the source and signal model HO and HI could represent any of a
number of interesting problems, and not only the case of transmitting a one or a
zero. For example, HI could represent the presence of a disease (and conversely
HO its absence), and the observation space could be any number of measurable
physiological parameters such as blood count. The decision would then be one

24 An Introduction to Intrusion Detection

of 'sick' or 'healthy.' In our case it would be natural to assign the symbol HI
to some form of intrusive activity, and HO to its absence.

The problem is then one of deciding the nature of the probabilistic transition
mechanism. We must choose what data should be part of our observation space,
and on this basis derive a decision rule that maximizes the detection rate and
minimizes the false alarm rate, or settle for some desirable combination of the
two.

When deciding on the decision rule the Bayes criterion is a useful measure
ment of success [Tre68, pp. 24]. In order to conduct a Bayes test, we must
first know the a priori probabilities of the source output (see Chapter 3for fur
ther discussion). Let us call these PQ and Pi for the probability of the source
sending a zero or a one respectively. Second, we assign a cost to each of the
four possible courses of action. These costs are named Coo, Cio, Cn, and Coi,
where the first subscript indicates the output from our decision rule—what we
though had been sent—and the second what was actually sent. Each decision
or experiment then incurs a cost, in as much as we can assign a cost or value
to the different outcomes. For example, in the intrusion detection context, the
detection of a particular intrusion could potentially save us an amount that can
be deduced from the potential cost of the losses if the intrusion had gone un
detected. We aim to design our decision rule so that the average cost will be
minimized. The expected value—R for risk—of the cost is then [Tre68, p. 9]:

R = CooPo^(say HO\HO is true)

+CioPoP(say H1\H0 is true)

+CiiPiP(say H1\H1 is true)

+CoiPiP(say H0\H1 is true)

It is natural to assume that Cio > CQO and Coi > Cn, in other words the
cost associated with an incorrect decision or misjudgment is higher than that of
a correct decision. Given knowledge of the a priori possibilities and a choice
of C parameter values, we can then construct a Bayes optimal detector.

Though Figure 2.3 may lead one to believe that this is a multidimensional
problem, it can be shown [Tre68, p. 29] that a sufficient statistic can always be
found whereby a coordinate transform from our original problem results in a
new point that has the property that only one of its coordinates contains all the
information necessary for making the detection decision. Figure 2.4 depicts
such a case, where the only important parameter of the original multidimen
sional problem is named L.

It can furthermore be shown that the two main approaches to maximizing the
desirable properties of the detection—the Bayes or Neyman-Pearson criteria—
amount to the same thing; the detector finds a likelihood ratio (which will be a
function only of the sufficient statistic above) and then compares this ratio with

Intrusion Detection 25

P(L|HO)

Threshold

Figure 2.4. One dimensional detection model

a pre-set threshold. By varying the threshold in Figure 2.4, it can be seen that
the detection ratio (where we correctly say HI) and the false alarm rate (where
we incorrectly say HI) will vary in a predictable manner. Hence, if we have
complete knowledge of the probability densities of HO and HI we can construct
an optimal detector, or at least calculate the properties of such a detector. We
will later apply this theory to explain anomaly and signature detection.

Application to the Intrusion Detection Problem

This section is a discussion of the way in which the intrusion detection
problem may be explained in light of the classical model described above.

Source Starting with the source, ours is different from that of the ordinary radio
transmitter because it is human in origin. Our source is a human computer user
who issues commands to the computer system using any of a number of input
devices. In the vast majority of cases, the user is benevolent and non-malicious,
and he is engaged solely in non-intrusive activity. The user sends only HO, that
is, non-intrusive activity. Even when the user is malicious, his activity will
still mostly consist of benevolent activity. Some of his activity will however be
malicious, that is, he will send HI. Note that malicious has to be interpreted
liberally, and can arise from a number of different types of activities such as
those described by the taxonomies in for example [LBMC94, LJ97]. Thus, for
example, the use of a pre-packed exploit script is one such source of intrusive
activity. A masquerading^ intruder can be another source of intrusive activity.
In this case the activity that he initiates differs from the activity that the proper
user would have originated.

It should be noted that we have only treated the binary case here, differenti
ating between 'normal' behavior and one type of intrusion. In reality there are
many different types of intrusions, and different detectors are needed to detect

^A masquerader is an intruder that operates under false identity. The term was first used by Anderson
in [AndSO].

26 An Introduction to Intrusion Detection

them. Thus the problem is really a multi-valued problem, that is, in an oper
ational context we must differentiate between HO and HI, H2, H3,..,where
HI-Hn are different types of intrusions. To be able to discriminate between
these different types of intrusions, some statistical difference between a param
eter in the HO and HI situation must be observable. This is simple, almost
trivial, in some cases, but difficult in others where the observed behavior is sim
ilar to benevolent behavior. Knowledge, even if incomplete, of the statistical
properties of the 'signals' that are sent is crucial to make the correct detection
decision.

It should be noted that earlier classifications of computer security violations
that exist [LBMC94, NP89, LJ97] are not directed at intrusion detection, and
on closer study appear to be formulated on too high a level of representation
to be directly applicable to the problem in hand. There are now a handful of
studies that links the classification of different computer security violations to
the problem of detection, in this case the problem of what traces are necessary
to detect intrusions after the fact [ALGJ98, Bar04a, KMT04, Max03].

Probabilistic Transition Mechanism In order to detect intrusive behavior
we have first to observe it. In a computer system context it is rare to have the
luxury of observing user behavior directly, looking over the user's shoulder
while he provides a running commentary on what he is doing and intends to
do. Instead we have to observe the user by other means, often by some sort
of security logging mechanism, although it is also possible by observing the
network traffic emanating from the user. Other more direct means have also
been proposed, such as monitoring the user's keystrokes.

In the usual application of detection theory, the probabilistic transition mech
anism, or "channel", often adds noise of varying magnitude to the signal. This
noise can be modeled and incorporated into the overall model of the transmis
sion system. The same applies to the intrusion detection case, although our
"noise" is of a different nature and does not in general arise from nature, as
described by physics. In our case we observe the subject by some (imperfect)
means where several sources of noise can be identified. One such source is
where other users' behavior is mixed with that of the user under study, and it is
difficult to identify the signal we are interested in.

If, for example, our user proves to be malicious, and sends TCP-syn packets
from a PC connected to a network of PCs to a target host, intended to execute
a SYN-flooding denial-of-service attack on that host. Since the source host
is on a network of PCs—the operating systems of which are known to suffer
from flaws that make them prone to sending packet storms that look like SYN-
flooding attacks to the uninitiated^—it may be difficult to detect the malicious

^Or at least were prone to ten years ago.

Intrusion Detection 27

user. This is because he operates from under the cover of the noise added by
the poorly implemented TCP/IP stacks of the computers on the same source
network. It can thus be much more difficult to build a model of our 'channel'
than when the noise arises as a result of a purely physical process.

Observation Space Given that the action has taken place, and that it has been
'transmitted' through the logging system/channel, we can make observations.
The set of possible observations, given a particular source and channel model,
makes up our observation space. As said earlier, some results suggest that we
can always make some sort of coordinate transformation that transforms all
available information into one coordinate in the observation space. Thus in
every detection situation we need to find this transform.

In most cases the computer security we are presented with will be discrete
in nature, not continuous. This is different from the common case in detection
theory where the signals are most often continuous in nature. In our case a record
from a host-based security log will contain information such as commands or
system calls that were executed, who initiated them, any arguments such as
files read, written to, or executed, what permissions were utilized to execute
the operation, and whether it succeeded or not. In the case of network data
we will typically not have such high quality since the data may not contain all
security relevant information; for example, we will not know exactly how the
attacked system will respond to the data that it is sent, or whether the requested
operation succeeded or not [PN98]. The question of what data to log in order
to detect intrusions of varying kinds is central, but for a long time this question
was largely unaddressed. We also know little of the way different intrusions
manifest themselves when logged by different means.

Once again the literature is hardly extensive, although for example [ALGJ98,
HL93, LB98] and more recently [Bar04b] have addressed the issues presented
in this section, albeit from different angles.

Decision Rule Having made the coordinate transformation in the previous
step we then need to decide on a threshold to distinguish between HO and HI.

Thus our hope when we apply anomaly detection is that all that is not normal
behavior for the source in question—that cannot be construed as HO—is some
sort of intrusive behavior. The question is thus to what degree abnormal equates
to intrusive. This is perhaps most likely in the case of a masquerader who
one may presume is not trained to emulate the user whose identity he has
assumed. There are some studies that suggest that different users indeed display
sufficiently different behavior for them to be told apart [LB98].

28 An Introduction to Intrusion Detection

Existing Approaches to Intrusion Detection

For a survey of existing approaches to intrusion detection see [BAJ03]. Here
we will only outline the two major methods of intrusion detection: anomaly
detection and signature detection. These have been with us since the inception
of the field. In short, anomaly detection can be defined as looking for the
unexpected—that which is unusual is suspect—at which point the alarm should
be raised. Signature detection, on the other hand, relies on the explicit codifying
of 'illegal' behavior, and when traces of such behavior is found the alarm is
raised.

Anomaly Detection Taking the basic outline of detection and estimation the
ory laid out in the beginning of this section, we can elaborate upon it in de
scribing these methods. In contrast to the model in Figure 2.4, where we have
knowledge of both HO and HI, here we operate without any knowledge of HI.
Thus we choose a region in our observation space—X in Figure 2.3. To do
so, we must transform the observed, normal behavior in such a manner that it
makes sense in our observation space context. The region X will contain the
transformed normal behavior, and typically also behavior that is 'close' to it,
in such a way as to provide some leeway in the decision, trading off some of
the detection rate to lower the false alarm rate. The detector proper then flags
all occurrences of x in X as no alarm, and all occurrences of x not in X as an
alarm. Note that X may be a disjoint region in the observation space.

Signature Detection The signature detector detects evidence of intrusive ac
tivity irrespective of the model of the background traffic; these detectors have
to be able to operate no matter what the background traffic, looking instead for
patterns or signals that are thought by the designers to stand out against any
possible background traffic. Thus we choose a region in our observation space,
but in this instance we are only interested in known intrusive behavior. Thus
X will here only encompass observations that we believe stem from intrusive
behavior plus the same leeway as before, in this case trading off some of the
false alarm rate to gain a greater detection rate in the face of 'modified' attacks.
During detector operation we flag all occurrences of x in X as an alarm, and
all other cases as no alarm. X here may also consist of several disjoint regions,
of course.

Comparison with Bayes Optimal Detectors It is an open question to what
degree detectors in these classes can be made to, or are, approximate Bayes op
timal detectors. In the case of non-parametric intrusion detectors— detectors
where we cannot trade off detection rate for false alarm rate by varying some
parameter of the detector—merely studying the receiver operating characteris
tics (ROC) curve cannot give us any clue as to the similarity to a Bayes optimal

Intrusion Detection 29

detector. This is because the ROC curve in this case only contains one point,
and it is impossible to ascertain the degree to which the resulting curve follows
the optimal Bayes optimal detector. (See Chapter 3for a brief introduction to
ROC curves, and [Tre68] for a thorough treatment).

Summary

The dichotomy between anomaly detection and signature detection that is
present in the intrusion detection field, vanishes (or is at least weakened) when
we study the problem from the perspective of classical detection theory. If we
wish to classify our source behavior correctly as either HO or HI, knowledge
of both distributions of behavior will help us greatly when making the intrusion
detection decision. Interestingly, early on only few research prototype took
this view [Lee99, BAJ03]; all others were firmly entrenched in either the HO
or HI camp. It may be that further study of this class of detectors will yield
more accurate detectors, especially in the face of attackers who try to modify
their behavior to escape detection. A detector that operates with a strong source
model, taking both HO and HI behavior into account, will most probably be
better able to qualify its decisions by stating strongly that this behavior is not
only known to occur in relation to certain intrusions, and further is not a known
benign or common occurrence in the supervised system.

The detectors we have developed in connection with this book (except for
the one in Chapter 4) all take both HO and HI into account.

Chapter 3

THE BASE-RATE FALLACY AND
THE DIFFICULTY OF
INTRUSION DETECTION

Many different demands can be made of intrusion detection systems.^ An
important requirement of an intrusion detection system is that it be effective i.e.
that it should detect a substantial percentage of intrusions into the supervised
system, while still keeping the false alarm rate at an acceptable level.

This chapter aims to demonstrate that, for a reasonable set of assumptions,
the false alarm rate is the limiting factor for the performance of an intrusion
detection system. This is due to the base-rate fallacy phenomenon, that in order
to achieve substantial values of theBayesian detection rate, P{Intrusion\Alarm),
we have to achieve a—perhaps in some cases unattainably—low false alarm
rate.

A selection of reports of intrusion detection performance are reviewed, and
the conclusion is reached that there are indications that at least some types of
intrusion detection have far to go before they can attain such low false alarm
rates.

Many demands can be made of an intrusion detection system (IDS for short)
such as effectiveness, efficiency, ease of use, security, inter-operability, trans
parency etc. Although much research has been done in the field in the past ten
years, the theoretical limits of many of these parameters have not been studied
to any significant degree. The aim of this paper is to discuss one serious problem
with regard to the effectiveness parameter, especially how the base-rate fallacy
may affect the operational effectiveness of an intrusion detection system.

^This Chapter is based on [AxeOOa]

32 The Base-Rate Fallacy and the Difficulty of Intrusion Detection

1. Problems in Intrusion Detection
At present, the many fundamental questions regarding intrusion detection

remain largely unanswered. They include, but are by no means limited to:

Effectiveness How effective is the intrusion detection? To what degree does it
detect intrusions into the target system, and how good is it at rejecting false
positives, so called false alarms?

Ease of use How easy is it to field and operate for a user who is not a security
expert, and can such a user add new intrusion scenarios to the system? An
important issue in ease of use is the question of what demands can be made of
the person responding to the intrusion alarm. How high a false alarm rate can
she realistically be expected to cope with, and under what circumstances is
she likely to ignore an alarm? (It has long been known in security circles that
ordinary electronic alarm systems should be circumvented during normal
operation of the facility, when supervisory staff are more likely to be lax
because they are accustomed to false alarms [Pie48]).

Security When ever more intrusion detection systems are fielded, one would
expect ever more attacks directed at the intrusion detection system itself,
to circumvent it or otherwise render the detection ineffective. What is the
nature of these attacks, and how resilient is the intrusion detection system
to them? When the paper this chapter was based on was first published,
this question had seen little to no study. Today this problem is more at the
forefront of the research and we have begun to address it.

Transparency How intrusive is the fielding of the intrusion detection system
to the organization employing it? How many resources will it consume in
terms of manpower, etc?

This chapter is concerned with one aspect of one of the questions above, that
of effectiveness. More specifically it addresses the way in which the base-rate
fallacy affects the required performance of the intrusion detection system with
regard to false alarm rejection.

2. The Base-Rate Fallacy
The base-rate fallacy"̂ is one of the cornerstones of Bayesian statistics, stem

ming as it does directly from Bayes's famous theorem that states the relationship
between a conditional probability and its opposite, i.e. with the condition trans
posed:

^The idea behind this approach stems from [Mat96, Mat97].

The Base-Rate Fallacy 33

Expanding the probability P{B) for the set of all n possible, mutually ex
clusive outcomes A we arrive at equation (3.2):

P{B)=^^P{Ai)^P{B\Ai) (3.2)
z = l

Combining equations (3.1) and (3.2) we arrive at a generally more useful
statement of Bayes's theorem:

The base-rate fallacy is best described through example.^ Suppose that your
doctor performs a test that is 99% accurate, i.e. when the test was administered
to a test population all of whom had the disease, 99% of the tests indicated
disease, and likewise, when the test population was known to be 100% free of
the disease, 99% of the test results were negative. Upon visiting your doctor
to learn the results he tells you he has good news and bad news. The bad news
is that indeed you tested positive for the disease. The good news however,
is that out of the entire population the rate of incidence is only 1/10000, i.e.
only 1 in 10000 people have this ailment. What, given this information, is the
probability of you having the disease? The reader is encouraged to make a
quick "guesstimate" of the answer at this point.

Let us start by naming the different outcomes. Let S denote sick, and -^S,
i.e. not S, denote healthy. Likewise, let P denote a positive test result and
-iP denote a negative test result. Restating the information above; given:
P{P\S) = 0.99, P{^P\^S) = 0.99, and P{S) = 1/10000, what is the
probability P{S\P)1

A direct application of equation (3.3) above gives:

^ ' ^ P{S) • P{P\S) + P{^S) ' P{PhS) ^ ^

The only probability above which we do not immediately know is P{P\-^S).
This is easily found though, since it is merely 1 — P{-^P\-^S) = 1% (likewise,
P{-^S) = 1 — P{S)). Substituting the stated values for the different quantities
in equation (3.4) gives:

•̂ This example is from [RN95].

34 The Base-Rate Fallacy and the Difficulty of Intrusion Detection

P(5 |P) = - /̂̂ QQQQ-Q-^^ , = 0.00980... « 1%
^ ' ' 1/10000 • 0.99 + (1 - 1/10000) • 0.01

(3.5)
That is, that even though the test is 99% certain, your chance of actually

having the disease is only 1/100, because the population of healthy people is
much larger than the population with the disease. For a graphical representation,
in the form of a Venn diagram, depicting the different outcomes, see Figure 3.1.

-.P&-.S

1)

Figure 3.1. Venn diagram of medical diagnostic example

Although the Venn diagram is not to scale it clearly demonstrates the basis of
the base-rate fallacy, i.e. that the population in the outcome S is much smaller
than that in -^S and hence, even though P{P\S) = 99% and P{-^P\-^S) =
99%, the relative sizes of the missing 1% in each case—areas 2) and 4) in the
diagram—are very different.

Thus when we compare the relative sizes of the four numbered areas in the
diagram, and interpret them as probability measures, we can state the desired
probability, P{S\P)—i.e. "What is the probability that we are in area 3) given
that we are inside the P-area?" It may be seen that, area 3) is small relative to
the entire P-area, and hence, the fact that the test is positive does not say much,
in absolute terms, about our state of health.

This result often surprises people, ourselves included, and the phenomenon—
that humans in general do not take the basic rate of incidence, the base-rate.

The Base-Rate Fallacy in Intrusion Detection 35

into account when intuitively solving such problems of probability—is aptly
named "the base-rate fallacy."

3. The Base-Rate Fallacy in Intrusion Detection

In order to apply this reasoning in computer intrusion detection we must first
find, or make reasonable assumptions about the various probabilities.

3.1 Basic Frequency Assumptions

Let us for the sake of further argument hypothesize a figurative computer
installation with a few tens of workstations, a few servers—all running UNIX—
and a couple of dozen users. Such an installation could produce in the order of
1,000,000 audit records per day with some form of "C2" compliant logging in
effect (in itself a testimony to the need for automated intrusion detection).

Suppose further that in such a small installation we would not experience
more than a few, say one or two, actual attempted intrusions per day. Even
though it is difficult to get any figures for real incidences of attempted computer
security intrusions, this does not seem to be an unreasonable number.

Furthermore, assume that at this installation we do not have the manpower
to have more than one site security officer—SSO for short—who probably has
other duties, and that the SSO, being only human, can only react to a relatively
low number of alarms, especially if the false alarm rate is high (50% or so), see
Section 3.2.

Even though an intrusion could possibly affect only one audit record, it
is likely on average that it will affect a few more than that. Furthermore, a
clustering factor actually makes our estimates more conservative, so it was
deemed prudent to include one. Using data from a previous study of the trails
that SunOS intrusions leave in the system logs [ALGJ98], we can estimate that
ten audit records would be affected in the average intrusion.

3.2 Human Machine Interaction in Intrusion Detection

The previous assumptions above are "technical" in nature, i.e. those well
versed in the field of computer security can make similar predictions, or adjust
the ones above to suit their liking. It is a simple matter to verify or predict similar
measures. However, the factor of the performance of the human operator does
not lend itself to the same technological estimates. Thus, a crucial question is
that of the capacity of the human operator to correctly respond to the output of
the system. Especially the operator's capacity to tolerate false alarms.

Unfortunately there have been no experiments concerning these factors in
the setting of computer security intrusion detection. There is, however, some

36 The Base-Rate Fallacy and the Difficulty of Intrusion Detection

research in the context of process automation and plant control, such as would
be the case in a (nuclear) power station, paper mill, steel mill, large ship etc.

Broadly speaking, research has shown [Ras86, p. 5] that a human operator
(decision maker) in such an environment has to:

Detect the need for intervention and to

observe important data in order to have direction for subsequent activities. He
then has to analyze the data in order to

identify the present state of affairs and to

evaluate their possible consequences with reference to operational goals and
company policies. Then a

target state into which the system should be transfered has to be chosen, and
the

task that the decision maker has to perform is selected from a review of the re
sources available to reach said target state. When the task has been identified
the proper

procedure i.e. how to do it, must be planned and executed.

In our case we have chosen to aid the operator with an intrusion detection
system. However we quickly notice the absence of any discussion about the
rest of the decision making chain—even though the recovery element has seen
some general study—when it comes to the research into human interaction with
intrusion detection systems. Most authors don't even discuss the second step
in recovery above, namely that of aiding the operator with observations about
the state of the system. (The normal state of which is most often not known in
our case. No-one knows what the traffic on our computer networks typically
looks like, hence the reported difficulty of even deciding if something really is
amiss [Sto95].)

More specifically, in this particular case, we are interested in the operator's
ability to act "correctly" in the presence of false alarms. I.e. how many false
alarms an operator can tolerate without loosing his vigilance.

This is a difficult question to answer in this particular context, not only
because there has been no research into the question. A few difficulties are:

• First, the modeling of the human operator handling such a highly complex
and cognitive task as the detection and resolution of a computer security
incident is difficult in general terms. It is doubtful that we will ever reach a
quantitative model of human performance and limitations in this area. We
can make several qualitative statements however [Wic92, pp. 258].

The Base-Rate Fallacy in Intrusion Detection 37

• Second, several different factors influence the performance of the operator
at different times, such as previous experience, level of training, work load,
external and internal stresses, state of vigilance etc.

• Third, the human operator is prone to several different kinds of bias when
making a decision of this kind, biases relating to his in ability to correctly
make statistical estimates, of making correct logical inferences etc. From
our perspective the bias of tending to stay with the original hypothesis (that
no intrusion has taken place in our case) and not seek disconfirmatory evi
dence is especially interesting to us [Wic92, pp. 280].

What previous research in other areas seem to tell us specifically about our
situation, is that human operators tend to have a very low tolerance for false
alarms. During normal operation, humans have a tendency to over trust the in
fallibility of the automated equipment. However once the equipment is seen to
malfunction (raise false alarms in our case) humans tend to mistrust the equip
ment to a larger degree than what would be warranted by its actual performance.
"Trust once betrayed is hard to recover" [Wic92, p. 537] Perhaps surprisingly,
there has been little empirical research in this area [Nyg94, Wic92, p. 537].

What studies have been made [Nyg94, Dea72], seem to indicate that our
required level of false alarms, 50%, is a very conservative estimate. Most
human operators will have completely lost faith in the device at that point,
opting to treat every alarm with extreme skepticism, if one would be able to
speak of a "treatment" at all, the intrusion detection system would most likely
be completely ignored in a "civilian" setting.

3.3 Calculation of Bayesian Detection Rates
Let / and - i / denote intrusive, and non-intrusive behavior respectively, and

A and -^A denote the presence or absence of an intrusion alarm. We start by
naming the four possible cases (false and true positives and negatives) that arise
by working backwards from the above set of assumptions:

Detection rate Or true positive rate. The probability P{A\I), i.e. that quantity
that we can obtain when testing our detector against a set of scenarios we
know represent intrusive behavior.

False alarm rate The probability P{A\-^I), tht false positive rate, obtained
in an analogous manner.

The other two parameters, P{-^A\I), the False Negative rate, andP(->yl|-i/),
the True Negative rate, are easily obtained since they are merely:

P{--A\I) = 1 - P{A\I); P(-^h/) - 1 - P{A\-^I) (3.6)

Of course, our ultimate interest is that both:

38 The Base-Rate Fallacy and the Difficulty of Intrusion Detection

• P{I\Ä)—that an alarm really indicates an intrusion (henceforth called the
Bayesian detection rate though keeping in line with terminology in other
fields, the term positive predictive value would perhaps have been a better
choice), and

• P(-i/|-i^)—that the absence of an alarm signifies that we have nothing to
worry about,

remain as large as possible.
Applying Bayes's theorem to calculate P{I\Ä) results in:

PiI\Ä) = ^ W • P(^\^) (3 7)

Likewise for P(-iI | - i^):

These assumptions give us a value for the rate of incidence of the actual
number of intrusions in our system, and its dual (10 audit records per intrusion,
2 intrusions per day, and 1,000,000 audit records per day). Interpreting these
as probabilities:

P (/) = 1 / h l ^ = 2 .10-^
^ ^ / 2 • 10 (3.9)

P{^I) = 1 - P{I) = 0.99998

Inserting equation (3.9) into equation (3.7):

P(I\A) = 2 ' 10" ' ' -P(-^I^) (3 10)
^ ' ^ 2 .10-5 • P{A\I) + 0.99998 • P{A\^I) ^ ^ ^

Studying equation (3.10) we see the base-rate fallacy clearly. By now it
should come as no surprise to the reader, since the assumptions made about
our system makes it clear that we have an overwhelming number of non-events
(benign activity) in our audit trail, and only a few events (intrusions) of any
interest. Thus, the factor governing the detection rate (2 • 10"^) is completely
dominated by the factor (0.99998) governing the false alarm rate. Further
more, since 0 < P{A\I) < 1, the equation will have its desired maximum for
P{A\I) = 1 and P{A\-^I) = 0, which results in the most beneficial outcome
as far as the false alarm rate is concerned. While reaching these values would
be an accomplishment indeed, they are hardly attainable in practice. Let us
instead plot the value of P{I\Ä) for a few fixed values of P{A\I) (including

The Base-Rate Fallacy in Intrusion Detection 39

CD
"(^
oc

c

Ü
0)

Q
c

Co

GQ

0.1 t-

0.01

0.001
1e-07 1e-06 1e-05 0.0001

False alarm rate: P(A|-il)
0.001

Figure 3.2. Plot of Bayesian detection rate versus false alarm rate

the "best" case P(A|/) = 1), as a function of P{A\-^I) (see Figure 3.2). It
should be noted that both axes are logarithmic.

It becomes clear from studying the plot in Figure 3.2 that even for the unre-
alistically high detection rate 1.0 , we have to have a very lov^ false alarm rate
(on the order of 1 • 10"")̂ for the Bayesian detection rate to have a value of 66%,
i.e. about two thirds of all alarms will be a true indication of intrusive activity.
With a more realistic detection rate of, say, 0.7, for the sdivat false alarm rate,
the value of the Bayesian detection rate is about 58%, nearing fifty-fifty. Even
though the number of events (intrusions/alarms) is still low, it is our belief that a
low Bayesian detection rate would quickly "teach" the SSO to (un)safely ignore
all alarms, (especially if the detected intrusions were of a trivial, say probing,
nature) even though their absolute numbers would theoretically have allowed a
complete investigation of all alarms. This becomes especially true as the system
grows; a 50% false alarm rate of in total of 100 alarms would clearly not be
tolerable. Note that even quite a large difference in the detection rate does not
substantially alter the Bayesian detection rate, which instead is dominated by
\hQ false alarm rate. Whether such a low rate of false alarms is at all attainable
is discussed in section 4.

40 The Base-Rate Fallacy and the Difficulty of Intrusion Detection

It becomes clear that, for example, a requirement of only 100 false alarms
per day is met by a large margin with SL false alarm rate of 1 • 10~^. With 10^
"events" per day, we will see only 1 false alarm per day, on average. By the
time our ceiling of 100 false alarms per day is met, at a rate of 1 • 10~^ false
alarms, even in the best case scenario, our Bayesian detection rate is down to
around 2%,"̂ by which time no-one will care less when the alarm goes off.

Substituting (3.6) and (3.9) in equation (3.8) gives:

p(.| , . 0.99998 • (l - P (A h J))
^" ' " ^ 0.99998 • (1 - P(>lh/)) + 2 . 10-^ . (1 - P(A|/)) ^* ^

A quick glance at the resulting equation (3.11) raises no cause for concern.
The large P{^I) factor (0.99998) will completely dominate the result, giving
it values near 1.0 for the values of P{A\-^I) under discussion here, regardless
ofthe value of P(A|/) .

This is the base-rate fallacy in reverse, if you will, since we have already
demonstrated that the problem is that we will set off the alarm too many times
in response to non-intrusions, combined with the fact that we do not have many
intrusions to begin with. Truly a question of finding a needle in a haystack.

The author does not see how the situation underlying the base-rate fallacy
problem will change for the better in years to come. On the contrary, as comput
ers get faster they will produce more audit data, while it is doubtful that intrusive
activity will increase at the same rate. In fact, it would have to increase at a
substantially higher rate for it to have any effect on the previous calculations,
and were it ever to reach levels sufficient to have such an effect—say 30% or
more—the installation would no doubt have a serious problem on its hands, to
say the least! It would most definitely not have a detection problem anymore.

4. Impact on Intrusion Detection Systems
As stated in the introduction to this book, approaches to intrusion detection

can be divided into three major groups, signature-hdiS>t&, anomaly-h^std, and
combined detectors, i.e. detectors that operate with a model of both benign and
malicious behavior. The previous section developed requirements regarding
false alarm rates and detection rates in intrusion detection systems in order
to make them useful in the stated scenario. This section will compare these
requirements with reported results on the effectiveness of intrusion detection
systems.

It can be argued that this reasoning does not apply to anomaly-based in
trusion detection. In some cases anomaly-based detection tries not to detect

"^Another way of calculating that differs from equation (3.10) is of course to realise that 100 false alarms
and only a maximum of 2 possible valid alarms gives: 2+^00 ^ ^^*

Impact on Intrusion Detection Systems 41

intrusions per se, but rather to differentiate between two different subjects,
flagging anomalous behavior in the hopes that it is indicative of a stolen user
identity for instance, see for example [LB98], which even though it reports
performance figures, is not directly applicable here. However, we think the
previous scenario is useful as a description of a wide range of more "immedi
ate," often network-based, attacks, where we will not have had the opportunity
to observe the intruder for an extended period of time "prior" to the attack.

4.1 ROC Curve Analysis
There are general results in detection and estimation theory that state that the

detection and false alarm rates are linked [Tre68], though the extent to which
they are applicable here is still an open question. Obviously, if the detection
rate is 1, saying that all events are intrusions, we will have a false alarm rate of
1 as well, and conversely the same can be said for the case where the rates are
0.̂ Intuitively, we see that by classifying more and more events as intrusive—
in effect relaxing our requirements on what constitutes an intrusion—we will
increase our detection rate, but also misclassify more of the benign activity, and
hence increase om false alarm rate.

Assumed ROC — I —
Ripper —K—•

Bayesian ev. class ••••)K-
Helman frequentist D

W&S - • • • -
Bayesvis - - 0 —

Chi2vis ••••••••

0.6 ! Ä ' ' . . / / . .
^ 7 1

m —̂

Assumed ROC
Ripper (Warrender)
Bayesian ev. class

HMM_

- X -

0 0.02 0.04 0.06 0.08 0.1
False alarm rate: P(Ahl)

0 2e-05 4e-05 6e-05 8e-05 0.0001
False alarm rate: P(Ahl)

Figure 3.3. ROC-curves for the "low per- Figure 3.4. ROC-curve for the "high per
formers" formers"

Îf you call everything with a large red nose a clown, you'll spot all the clowns, but also Santa's reindeer,
Rudolph, and vice versa.

42 The Base-Rate Fallacy and the Difficulty of Intrusion Detection

Plotting the detection rate as a function of ih^ false alarm rate we end up
with what is called a ROC—Receiver Operating Characteristic—curve. (For
a general introduction to ROC curves, and detection and estimation theory,
see [Tre68].) We have already stated that the points (0; 0) and (1; 1) are mem
bers of the ROC curve for any intrusion detector. Furthermore, the curve be
tween these points is convex; were it concave, we would do better to reverse our
decision. Nor can it contain any dips, as that would in effect indicate a faulty,
non-optimal detector, since a randomized test would then be better; we could
achieve a detector operating at any point along the interpolated line between
the two points straddling the dip, by making a weighted randomized decision
involving the detectors at the straddling points. If we wanted a detector with
a performance corresponding to the point half way between the two straddling
points we would just need to toss a fair coin and run the lower detector when
the coin came up heads and the upper when the coin came up tails. We're not
seriously suggesting that anyone actually build such a detector, but the obser
vation serves as a check against poorly performing detectors. If your detector
ROC has a dip, you should be able to do better in that region of the curve. See
"Assumed ROC" curve in figures 3.3 and 3.4 for the ROC curve that depicts
our previous example.

We see that the required ROC curve has a very sharp rise from (0; 0) since we
quickly have to reach acceptable detection rate values (0.7) while still keeping
ihe false alarm rate under control.

4.2 Previous Experimental Intrusion Detection Evaluations
When we first wrote this paper, the literature was not overladen with experi

mental results from tests of intrusion detection systems. Now, some five years
later, this is still very much the case, even though quite a few extra results have
been reported. Ideally we would like several different results from the different
classes of intrusion detectors, evaluated on the same data sets. Unfortunately
there only exists a few reports of anomaly detection performance in this regard
e.g [HL93] with no example of specification based intrusion detection, and one
independent report of a classical detector [WFP99]. Several signature based
detectors have been tested for DARPA by however [GLC"^98].

Unfortunately data from the evaluation performed by DARPA by Lincoln
Labs at MIT [LGG+98, GLC+98] is unavailable to us for independent eval
uation because of U.S. export restrictions, and furthermore serious doubts as
to the quality of parts of that data have been raised [MC03]; it turns out that
some of the fields in the network data differ between the simulated background
traffic and the injected attacks in a manner that makes them completely trivial
to differentiate! Furthermore this difference has no bearing on the attack versus
benign traffic dichotomy whatsoever, but is purely an artifact of the merging
process. It is currently unknown to what degree the evaluation of the intrusion

Impact on Intrusion Detection Systems 43

detectors studied below suffered from this flaw, i.e. to what extent they picked
up on the fields that differed, or whether they operated without specific knowl
edge of this difference. It should be noted that this flaw is asymmetric in that,
if the detector takes advantage of it, it will tend to make the detector look better
than it should. It will never make detectors look worse. Other criticisms of the
DARPA evaluation have also been raised [McHOO].

When this paper was first written, the details of this study had not been
published, but since then a paper [LFG+00] and a very detailed report of the
data and procedures of the experiment have been made available [HLF"^01].
Thus, what has been made known about the DARPA evaluation is that the
study was conducted using a simulated network of workstations, transmitting
simulated traffic. This traffic was generated based on real traffic observed on
a large US Air Force base, and a large research institute. This of course lends
some credibility to an argument about the generality of the background traffic.
Of course, the degree to which the background traffic is representative of the
background traffic in the field is a crucial question when it comes to the value
of the test as an indicator of false alarm rates during normal usage.

In the test, a number of different attacks were then inserted into the simulated
network, including denial of service attacks against the network, and "root" ex
ploits against individual workstations. The experimenters invited several dif
ferent intrusion detectors to participate in the study. These were all signature
based detectors operating on either network or host data. Even though there
is more going on behind the scenes (the detection rate varies between approx
imately 20%-90% for the best scoring detector for all attacks) we will limit
the presentation the best overall scores for the conglomerate of detectors in
the network study, i.e. the detector resulting from combining the four different
detectors and choosing the best performer in all instances. Note that this may
not be realistic, since it would be difficult to perform this conglomeration in
practice, to say the least.

Also not all detectors performed equally well when dealing with all intru
sions, and it is a general criticism that in the case of signature based detection,
the designer of the signature can easily trade off detection rate for false alarm
rate by varying the generality of the signature. The more general it is, the more
variations of the same intrusive behavior it will detect, but at the cost of a higher
false alarm rate. It is not known to what extent the DARPA evaluation used
variations of the attacks presented to the designers of the intrusion detection
systems for training purposes, in the final evaluation. This is an important point
in that when such systems are commercialized, it will be impossible to keep
the detection signatures secret from the would be intruders, and the more savvy
among them will of course attempt to vary their techniques in order to evade
detection. A recent paper investigates just how brittle such signatures can be in
the face of modification for the purpose of evasion of the IDS [VRB04].

44 The Base-Rate Fallacy and the Difficulty of Intrusion Detection

Much more can be said about this evaluation, but we will limit our comments
to the above. Of course choosing the best performer makes our comparison more
conservative, even though this is somewhat moderated by the flaws inherent in
the data.

The second study [WFP99] lists test results for six different intrusion de
tection methods that have been applied to traces of system calls made into the
operating system kernel by nine different privileged applications in a UNIX en
vironment. Most of these traces were obtained from "live" data sources, i.e.
the systems from which they were collected were production systems. The
authors' hypothesis is that short sequences of system calls exhibit patterns that
describe normal, benign activity, and that different intrusion detection mech
anisms can be trained to detect abnormal patterns, and flag these as intrusive.
The researchers thus trained the intrusion detection systems using part of the
"normal" traffic, and tested their false alarm rate on the remaining "normal"
traffic. They then trained the systems on intrusive scenarios, and inserted such
intrusions into normal traffic to ascertain the detection rate. The experimental
method is thus close to the one described in Sections 2 and 3 of this chapter.
This study evaluated as one of the systems the self learning "classical" detector,
RIPPER, described by Lee [Lee99].

The third study [HL93] is a treatise on the fundamental limits of the effective
ness of intrusion detection. The authors constructs a model of the intrusive and
normal process and investigate the properties of this model from an anomaly
intrusion detection perspective under certain assumptions. Their approach dif
fers from ours in that they do not provide any estimates of the parameters in
their model, opting instead to explore the limits of effectiveness when such in
formation is unavailable. Of greatest interest here is their conclusion in which
the authors plot experimental data for two implementations, one a frequentist
detector that—it is claimed—is close to optimal under the given circumstances,
and an earlier tool designed by the authors. Wisdom & Sense [VL89]. Unfor
tunately, only one type of anomaly detection system, one that operates with
descriptive statistics of the behavior of the subject, is covered. As previously
mentioned, specification based intrusion detection is not covered, and further
more, neither are more "sophisticated" detectors, such as neural network based
detectors (such as [DBS92]), that take time series behavior of the subject into
account.

The fourth study is from a more recent attempt at optimizing the combination
of several smaller (i.e. reduced in scope) anomaly detectors using Bayesian
belief networks applied to traces of system calls [KMRV03]. The resulting
detector was trained and applied to the system call traces of a few different
server processes that were exploited as a result of network based (or network
launched) attacks in the Lincoln Labs evaluation. As the detector didn't see the

Impact on Intrusion Detection Systems 45

network traffic directly it did not suffer from the flaw in network data described
earlier.

The results from the studies above and from our own two visualizing de
tectors (named Bayesvis and Chilvis) described later in this book, have been
plotted in figures 3.3 and 3.4. Where a range of values were given in the original
presentation, the best—most "flattering" if you will—value was chosen. Fur
thermore, since not all the work cited to provided actual numerical data, some
points are based on our interpretation of the presented values. In the case of
the DARPA study the results were rescaled to conform with our requirements.
(The original DARPA test assumes 66,000 events per day instead of our 100,000
events per day.) We feel that these are accurate enough for the purpose of giving
the reader an idea of the performance of the systems.

The cited work can be roughly divided into two classes depending on the
minimum false alarm rate values that are presented, and hence, for clarity, the
presentation has been divided into figures, where the first (Figure 3.3) presents
the first class, with larger values for the false alarm rate. These consists of
most of the anomaly detection results in this study with the exception of the
more modem detector reported in [KMRV03] named Bayesian ev. class in the
figure. In the figure "Helman frequentist," and "W&S" denote the detection
results from [HL93]. It is interesting to note, especially in the light of the
strong claims made by the authors of this evaluation, that all of the presented
false alarm rates are several orders of magnitude larger than the requirements
put forth in Section 3 and that a later anomaly detection systems surpasses
it. It should be noted that the detectors developed by the authors were run on
web server data that contained only the types of attacks and not the instances
such as for all other detector results reported here. Hence if easily detected
types of attack were very prevalent in the data this would tend to underplay the
performance of these detectors, and vice versa. They are included here mainly
to illustrate the fact that even though they report false alarm rates that are much
higher than those postulated here, they still work (or so we would claim) in
that they address another facet of the problem, namely that of how to present
the data to the operator in such a way as to make the false alarms (and true
alarms for that matter) as easily identifiable as possible, permitting the operator
to remain effective.

The second class of detectors, depicted in Figure 3.4, consists of the average
results of Ripper [Lee99], a high performance Hidden Markov Model detector
(labeled "HMM" in the figure) tested by Warrander et. al. in [WFP99], and the
DARPA results. Here the picture is less clear. The authors report false alarm
results close to zero for lower detection rates, with one performance point nearly
overlapping our required performance point. The HMM detector is also close
to what we would require. It is more difficult to generalize these results, since
they are based on one method of data selection, and the authors do not make as

46 The Base-Rate Fallacy and the Difficulty of Intrusion Detection

strong a claim as those made for the previous set of detectors. The DARPA data
from [GLC+98], show up as "DARPA TCP" in Figure 3.4. They are also in the
vicinity of the required performance point, but the question of the generality
of the training/test data, and hence the results, remains. Note that the more
modem anomaly detection system (Bayes ev. class) is plotted here also because
it has one operational point at a detection rate of just under 0.6 for a false alarm
rate of zero. It is also interesting to note (though difficult to see in the figures)
that it holds this constant detection rate for false alarm rate increasing to close
to 0.001. This phenomenon repeats itself for the following steps up in detection
rate, where the same detection rate is reported for a range of false alarm rates,
giving the ROC curve a stair-like appearance. As we have discussed previously,
this means that there is, in theory at least, room for improvement, as a simple
randomized weighing of these points would lead to a curve consisting of a
convex polygon shape. So even though this detector does not reach our goal for
detection rate, it is of course a strong result in that it manages a decent detection
rate at zero false alarms despite being a pure anomaly detector.

5. Future Directions
One sticking point is the basic probabilities that the previous calculations are

based on. These probabilities are subjective at present, but future work should
include measurement either to attempt to calculate these probabilities from ob
served frequencies—the frequentist approach—or to deduce these probabilities
from some model of the intrusive process and the intrusion detection system—
the objectivist approach. The latter would in turn require real world observation
to formulate realistic parameters for the models.

Furthermore, this discourse treats the intrusion detection problem as a binary
decision problem, i.e. that of deciding whether there has been an "intrusion" or
not. The work presented does not differentiate between the different kinds of
intrusions that can take place, and nor does it recognize that different types of
intrusions are not equally difficult or easy to detect. Thus on a more detailed
level, the intrusion detection problem is not a binary but rather an n-valued
problem.

Another area that needs attention is that of the SSO's capabilities. How
does the human-computer interaction take place, and precisely which Bayesian
detection rates would an SSO tolerate under what circumstances for example?
This is the question that we address in the remainder of the book.

6. Further Reading
Since the first publication of the material on which this chapter is based, oth

ers have approached the problem of determining the effectiveness of intrusion
detection, most notably Lee et. al. [LFM"^02] where they expand on the model

Conclusions 47

presented here by considering different types of attacks and adding varying
costs for their detection and failure of detection.

7. Conclusions
This chapter demonstrated that intrusion detection in a realistic setting is

harder than was perhaps thought. This is due to the base-rate fallacy problem,
because of which the factor limiting the performance of an intrusion detection
system is not the ability to identify behavior correctly as intrusive, but rather its
ability to suppress false alarms. A very high standard, less than 1/100,000 per
"event" given the stated set of circumstances, will have to be reached for the
intrusion detection system to live up to these expectations as far as effectiveness
is concerned.

The cited studies of intrusion detector performance that were plotted and
compared indicate that anomaly-based methods may have had a long way to go
before they could reach these standards, since their false alarm rates were several
orders of magnitude larger than what we demand, but that more recent results
showed reason for hope in this respect. When we come to the case of signature-
based detection methods the picture was less clear. Even though the cited work
seems to indicate that current signature intrusion detectors can operate close to
the required performance point, how well these results generalize in the field
was and is still an open question. We only have three data point when it comes to
the more qualified "classical" detectors, and the first seemed to perform on par
with signature based detectors while our own approaches were several orders
of magnitude off.

Chapter 4

VISUALIZING INTRUSIONS: WATCHING THE
WEBSERVER

As we learned in the previous chapter, a significant problem with intrusion
detection systems is the high number of false alarms. In this chapter^ we begin
our investigation into the use of information visualization [CMS99, SpeOl] in
intrusion detection. The main problem with applying information visualization
to intrusion detection is the large amount of data that the user is faced with. To
address this we apply an anomaly detection inspired method to reduce the log
to manageable proportions, before applying graph visualization to understand
the actual data. The hypothesis is that this enables the user to benefit from the
strengths of both visualization—quickly making sense of medium size data sets,
and anomaly detection—summarily discarding large amounts of uninteresting
data, all the while avoiding the problems of visualization having a limit to the
amount of data that can reasonably be handled, and anomaly detection having
a high false alarm rate for decent detection rates.

We believe that the application of visualization to intrusion detection has a
number of other desirable effects; mainly that the site does not need as detailed a
security policy as with pre-programmed intrusion detection systems, and that an
understanding of the underlying security principles being violated is furthered.
Applying information visualization to the problem of intrusion detection may
seem obvious (at least in retrospect) but success is by no means assured. The
main problem is one of scale: most information visualization techniques cannot
be used to visualize the large amounts of data with which we are faced, at least
not in a straightforward manner. On the order of thousands of data objects are
the norm, rather than the hundreds of thousands we are faced with here [SpeOl].

^This chapter is based on [Axe04b].

50 Visualizing Intrusions: Watching the Webserver

Therefore we investigate the use of some form of anomaly based log reduction
to reduce these logs prior to visualization, drawing on the strengths of both
methods, to combat their respective weaknesses.

To that end we have chosen to perform an empirical study of the access
requests made to a fairly large public webserver. We develop and apply an
anomaly based log reduction system to the access requests to reduce their num
ber to manageable size. The hypothesis being that we can tolerate a high number
of false alarms since we will visualize the output. Thus a simple anomaly based
scheme will suffice. We then develop a visualization technique that visualizes
the structure of the selected access requests, and apply the technique to the
reduced log to identify benign and malicious accesses. The chapter ends with
a more detailed study of the results of the visualization technique and the log
reduction system.

1. The Experimental System
For the experiment, a webserver access log was studied. HTTP is of course a

major protocol (indeed to the general public the World Wide Web is the Internet),
and very important from a business perspective in many installations. Also we
believe that there would be security relevant activity to be found in the webserver
log under study, since there have been numerous (mostly automated) attacks
reported e.g. [CEROlb, CEROla]. In addition, webserver logs are an example
of application level logging which is an area that has received relatively little
attention. Attention instead being focused on lower level network protocols
or lower level host based logs. Also important is the fact that webserver logs
are less sensitive from a privacy perspective—something that is not true when
monitoring network traffic in general—since it is a service we provide to the
general public who have lower expectation of privacy, and hence act accordingly.
We recognize that this may not be true of every webserver in operation.

It should be stressed that the primary interest is in experimenting with the
effectiveness of the combination of visualization and anomaly based log reduc
tion, not in producing a realistic tool for usage in the field. Unfortunately there
is a dearth of publicly available corpora useful for intrusion detection research.
The most popular such corpora is the Lincoln Labs DARPA evaluation data,
even though it is not without its flaws [McHOO]. As it is export controlled it is
unfortunately unavailable to us.

The webserver under study serves a university Computer Science department.
The server was running Apache version L3.26, and set to log according to the
common log format. The log consists of a line based text file with each line
representing a single HTTP access request. The request field i.e. the actual
HTTP request sent to the server, is important as it is the central point of many
attacks against a web server. The request field consists of the request method
("GET", "HEAD", "CONNECT", etc), followed by the path to the resource

The Log Reduction Scheme 51

the client is requesting, and the method of access (e.g. "HTTP 1.1"). Thtpath
in turn can be divided into components separated by certain reserved characters.

We studied the log for the month of November 2002, since it was believed
that it would contain security relevant incidents, and we had access to later logs
with which to compare the results. The access log contained ca. 1.2 million
records. Selecting the actual request fields and removing duplicates ca. 220000
unique requests were identified. Because of their importance it is these unique
requests that will be studied in the rest of the chapter.

2. The Log Reduction Scheme
The log reduction scheme is based on descriptive statistics; in this case the

frequencies with which events occur. This is in the same vein as seminal intru
sion detection systems such as NIDES [AFV95], though the approach here is
simpler still. In order to classify the requests according to how unusual they are
they are first cut up into components letting the reserved characters " ?:&=+$,"
separate the fields. For example a request such as "GET /pub/index.html
HTTP 1.1", is separated into the components "GET", "pub","index.html",
"HTTP" and "1.1". The absolute frequencies of the fields as they appear in
different unique request strings are counted.

• +

• ++ \

+ \
+ :

\

^ : 1 ^ 1

a«i++
turn i i imii i in •! M-H —

100 1000 10000 100000 1e+06

Element frequency

1000

900

800

700

600

500

400

300

200

100

0

[' ' •
[
[
t L ^

y
/
r

h'^^
J ^ :

r ^ 1]]]
1 !+• ' i • — i - - " i - - —^—' ^

y
f

1000

Rank

10000 100000 1e+06

Figure 4.1. Frequencies of component fre
quencies

Figure 4.2. Requests sorted by lowest score

The request as a whole is scored by calculating the average of the absolute
frequencies of the path components and hence requests consisting of unusual
components have a low score, signifying that they are viewed as anomalous.
However, studying the frequencies of the component frequencies we see that
a few high scoring elements (such as "GET") could skew (i.e. drive up) the
average. Therefore a cutoff is applied. Figure 4.1 lists the frequencies of the
frequencies of the components. Studying the figure we see that a cutoff of 1000
seems reasonable since most of the activity appears to have died off by then.

52 Visualizing Intrusions: Watching the Webserver

There are very few components with frequencies above 1000 and since they
represent elements that are very common, they would tend to drown the lower
frequency components we are interested in. Figure 4.2 plots the scores of the
requests as a function of the ordering. The lowest scoring 5200 accesses are
selected since that gives us a manageable amount of data to visualize.

3. Visualizing the Lowest Scoring Requests
The idea is to visualize the structure (and clusterings) of the various requests,

the hypothesis being that differences in structure will enable the user to (rela
tively) quickly identify patterns of benign and malicious access. To accomplish
this, the requests are cut into components as described in the previous section.
The resulting components are visualized as a general graph where adjacent
components in the request string are linked via directed edges in the graph.
Using the same example as before: the request "GET /pub/index.html HTTP
1.1", is cut up into nodes ("GET" etc.) with directed edges connecting "GET"
with "pub", "pub" with "index.html" etc.

To visualize the resulting graph the graph visualization tool Tulip was cho
sen.-̂ Tulip has extensive features for interactive viewing and manipulation of
general graphs. These aspects are unfortunately difficult to capture in writing
(even with illustrations).

To perform the actual detection the 5200 lowest scoring accesses is visualized
in Figure 4.3 ^ as a three dimensional general graph. The circular structure at
the top of the graph that can be seen to reach almost all of the rest of the graph
is the "GET"-node. Note that the edges are not drawn as solid lines, since this
would completely occlude the view.

At first Figure 4.3 may look daunting, but closer scrutiny reveals several large
features. Close to the center of the picture for example, we see a large double
ring structure. Contrasting it with all other features, it looks rather unique, there
is no other structure that looks similar (at least on this level), so we decide to
investigate further.

Enlarging the feature in question leads to Figure 4.4. Following the links
(which is somewhat difficult to do in the static display here) we learn of a
loose structure that starts with either "cgi-bin" or "cgi-local" and progresses
via "recipient", "subject" and then the unlikely looking random text strings. It
turns out that these text strings are in fact recipient email addresses for aol.com
and hotmail.com email users. The message to be mailed in many cases (but
not all) purports to be from John Doe, and is simply "Is anybody out there?"
So this particular access pattern seems to be a spam attack, trying to use a
misconfigured HTML to mail gateway that is commonly available. It was

^Tulip is freely available under the GPL from "http://www.tulip-software.org".
^The PDF-rendition of this graph may be clearer than a printed image.

http://aol.com
http://hotmail.com
http://www.tulip-software.org

Visualizing the Lowest Scoring Requests 53

Double ring

I:
' • <) :

n

Figure 4.3. Graph of the lowest scoring requests

not active on the server however. The unUkely looking recipient names are
probably automatically generated and the messages sent in the hope of eliciting
a response and in doing so finding legitimate email addresses. Note that a tree
visualization would have been less powerful here, since there are two major
(early in the request) parents of this particular pattern: "cgi-bin" and "cgi-
local". When visualized as a tree these branches would not have shared the
latter features, even when they would have been the same.

We are usually not so fortunate as to be able to identify attacks the moment
we lay our eyes on the graph. Instead we have to repeat the above detailed
analysis. It so happens that all the other major features that are identifiable in
Figure 4.3 are uninteresting. However, they are all also much more regular than
the pattern we have just seen. This makes it possible for the user to eliminate
many edges by eliminating fewer key parent nodes, slashing away what amounts

54 Visualizing Intrusions: Watching the Webserver

ho t rna i l .com, I

. 41
. jprlQczopf

ao l . com

http

^W^^±

rqtei
||ff^^h2dgpc^

go^rnzodv
kfg^^odsri

tqarduadb
zqxjkxbiw
unbmmaqzs

horrormöyies
sjx-l̂ ui?:imh

ujrakurmc
wkazakuDl

dopuzwlsc

xxdpp3y,xx

c^i-bm

y subject

k \wu)w%2Ecs%2Echalmers%2Ese%2Fcgi%2FFormMail%2Ecgi%2F

L5< ,

' .75886750 7:3581214.-,.
ugckupkrKooh-y l|;,3^^59l^ ̂ ^̂^̂^̂ ^3300188

54106921 \ \ \ rf^^t?\formmailzz"'" :.
7220251 1 >:^.fK:v^^^^ /yahoo.com
92614698 i ' > >, l*̂ ' • -̂ '̂ «'f ^ '̂--''.
15622169(> ^ IN' '̂ . .'-''-' 28667170

'64494926
^21254808

^ ^ • I

qsoai-ewno-

ImportantMail903

63290781 "^jj-**^ \ ' '< :-y:37683314

W^'^^^ ^[56950688 jö90g848"'̂ '

' ' >GE«1 "^^#§^'

r a g a y v f dq tt^öywhzf i " ' ^ l ^ fJ^S^f i

Figure 4.4. Zoom on feature (Spam attack in this case)

to whole (improper) subtrees, and this fairly large graph can be whittled down
with a relatively modest amount of effort."̂

An example of this process is depicted in Figure 4.5.^ The accesses to files
belonging to the user carlsson form a regular subtree that is easily identified as
having nothing of a security relevant nature and hence easily discarded. This
subgraph contains the data from 145 access requests, letting us discard some 3%
of the reduced log in one fell swoop. Looking at the distribution of accesses in
similar subgraphs, the twenty largest benign subgraphs (ranging from 213 to 59
access requests respectively) contain 42% of the access requests under scrutiny,
and the first 180 benign subgraphs contain some 80% of all access requests in
the reduced log. Hence most benign requests can be easily discarded.

A further illustration of this process can be seen in Figure 4.6. This also
shows how a benign subgraph can appear when it has not been isolated (as in
Figure 4.5). As we can see in this example it is still not too difficult to make
sense of the access requests that form this graph (nor indeed to realize that

"̂ It should be noted that Tulip is not \ht perfect tool in this respect. After a while it becomes cost effective to
eliminate the requests from the input data itself and restarting Tulip. In our experiment the elimination was
performed by judicious use of the UNix tools sort, grep etc.
^For the purpose of illustration the corresponding access requests here have been isolated to make the graph
clearer.

Detailed Analysis of the Features Found 55

svarlO.

svar8.htmL

kprtR5.gif

,piyci.a.sp0^jigct .class
Drt33.Q

kort47.gif<i

F/gwr^ 4.5. Zoom on feature (benign accesses forming a subgraph, isolated)

they're all benign). For the graph in Figure 4.6: 52 access request begin with
"02", 49 with "02/infovis", 33 with "02/infovis/literature" (and incidentally
the "02/ubicomp" branch only contains 3 distinct access requests). Thus this
graph contains about a third as many benign access requests as the graph in
Figure 4.5. Unfortunately not all subgraphs that are visible in Figure 4.3 are
of this type. As an example Figure 4.7 contains a graph that isn't very easy to
make sense of and eliminate as benign oif hand. In this case it turns out that it
is indeed benign, but more work has to be expended to arrive at that conclusion.
The situation is helped somewhat by leaving the troublesome subgraphs for the
latter stages of the analysis, when most of the simple benign subgraphs have
been eliminated as this improves layout and reduces occlusion.

After about one to two hours we arrive at the distilled requests that we cannot
eliminate as benign. Since user experiments are yet to be performed on this
method, a more precise time estimate cannot be given with any certainty. These
requests will be discussed in more detail in section 4.

56 Visualizing Intrusions: Watching the Webserver

Figure 4.6. Zoom on feature (benign accesses forming a subgraph, in vivo)

4. Detailed Analysis of the Features Found
The remaining accesses were classified into two categories, suspect and

intrusive. The reason for using a suspect class is that since this is data from
the field and the intentions of the entity submitting the request are not known,
it is sometimes difficult to decide whether a request is the result of an intrusive
process, the result of a flaw in the software that submitted it or a mistake by its
user. Also, some accesses are just plain peculiar (for want of a better word),
and even though they are probably benign, they serve no obvious purpose. As
the suspect class, consists of accesses that we don't mind if they are brought
to the attention of the operator, but on the other hand, as they are not proper
indications of intrusions, we will not include them in the experiment.

The intrusive class was further subdivided into seven different subclasses that
correspond to metaclasses (i.e. each of these metaclasses consists of several
types of attacks, each of which may be a part of one or several instances of
attacks) of the attacks that were observed:

Detailed Analysis of the Features Found 57

Figure 4.7. Zoom on feature (benign accesses forming a not very clear subgraph)

Formmail attacks The department was subjected to a spam attack, where
spammers tried to exploit a commonly available web mail form to send
unsolicited mail via our server. This type of attack stood out, with many
different requests found.

Unicode attacks These are attacks against the Microsoft HE web server, where
the attacker tries to gain access to shells and scripts by providing a path ar
gument that steps backward (up) in the file tree and then down into a system
directory by escaping the offending "\ . . \" sequence in various ways.^ IIS
protects against this attack by first checking the URL for the "\ . . \" char

acter sequence, or repetitions thereof, and disallowing the access if found.
However, it is possible to trick IIS into allowing such sequences by escap
ing the offending backslash character, and send an URL that contains e.g.

^See e.g. "http://builder.com.com/5100-6387_14-1044883-2.html".

http://builder.com.com/5100-6387_14-1044883-2.html

58 Visualizing Intrusions: Watching the Webserver

"\..%255C..\". IIS will not consider this URL "dangerous" since it does
not explicitly contain the parent directory character sequence. However, IIS
will then proceed to interpret the escape sequence in two steps (in violation
of the HTTP RFC) as consisting of first "\..%5C..\" and then finally as
"\ . . \ . . \" since the hexadecimal representation of the ASCII codes for "%"
and "\" are 0x25 and 0x5C respectively. Many variations on this scheme
are present in the log data.

Proxy attacks The attacker tried to access other resources on the Internet, such
as web servers or IRC servers via our web server, hoping that it would be
misconfigured to proxy such requests. We suppose that this is an attempt to
either circumvent restrictive firewalls, or more likely, to disguise the origin
of the original request, making tracking and identification more difficult.

Pathaccess attacks These are more direct attempts to access command inter
preters, cgi scripts or sensitive system files such as password files. A major
subclass here is trying to access back doors known to be left behind by other
successful system penetrations (by worms for example). Also configuration
files of web applications (e.g. web store software) was targeted. Attempts
to gain access to the configuration files of the webserver itself were also
spotted. These attacks are all different from the Unicode attacks above in
that no attempt at obscuring the access request was made. These attacks
rely instead on the web server being installed (or previously subverted) to
incorrectly provide access to these resources.

Cgi-bin attacks Attacks against cgi scripts that are commonly available on
web sites and may contain security flaws. We believe the availability of
several cgi script security testing tools to be the reason for the variety of
cgi probes present in our data. Although the the formmail script probed
for above is technically a cgi-bin attack, those invocations of the script that
tried to send email as a probing attack (evident from the subject and recipient
fields) were classified as ?i formmail attack and those that only probed for
the presence of the formmail script were classified as a cgi-bin attack.

Buffer overrun Only a few types of buffer overruns were found in our log data.
All of these are known to be indicative of worms targeting the Microsoft
IIS web server. They are easily identifiable from the prefix of the path, their
length and from the fact that they contain long runs of the same character
("A" or "N" respectively).

Mise This class contains seven accesses we are fairly certain are malicious in
nature, but which don't fit in any of the previous classes. They are various
probes using the OPTIONS request method, and a mixture of GET and POST
requests that target the root of the file system. Searching available sources

Effectiveness of the Log Reduction Scheme 59

it has been impossible to find any description of exactly which weaknesses
these requests target.

The intrusive class (minus tho formmail attack in Figure 4.4) is depicted in
a two dimensional flat graph in Figure 4.8 and the three dimensional graphs
we are accustomed to in Figure 4.9. We directly see a few security relevant
features (i.e. features that stand apart from benign accesses). One such feature
is the "system32'V"command.exe" tail in the lower middle of Figure 4.8.
This tail is common to many different branches from one of the roots of the
graph and turns out to be a strong indicator of the Unicode attack discussed
above. Another peculiar cluster is at the top, second from the left, and it turns
out to be instances of the meta class proxy attacks.

As we can see from the graphs there are many variations on the basic IIS
encoding attack being tried against the server, although the graph of course
does not list the actual attacks themselves. It would be interesting to study to
what extent the graph predicts (all/most) possible attacks (i.e. by following one
branch from the root to a leaf, do we get an executable attack that is not present
in the log file proper). The overflow attacks are simple buffer overruns against
fixed length buffers without adequate overflow protection, in our case these take
the form of very long components (formed of a string beginning with repetitions
of the character "N" or "A") followed by escaped shell code. Searching security
sources we find that the first of these is characteristic of the Code Red worm.

We will discuss the structure of these attacks in section 6, but for now it
will suffice to note that the attacks often come with a tail attached. The reason
seems to be that attacks that show some diversity nevertheless share common
features that may come at any position in the request, while this is not true for
normal accesses. In the case of Unicode attacks we see it is the "payload" i.e.
the commands that the attacker wishes to execute that show many similarities,
greater similarities in fact than the encoded path that leads to it However, despite
this structure apparent in the attacks, comparing e.g. Figure 4.5 to Figure 4.8
indicates that the visualization method is better suited to eliminate benign re
quests than to detect malicious requests. Which is just as well given that there
are many more benign requests than malicious ones; and in fact i\\t false alarms
suppression capability of an intrusion detection system determines its effective
ness [AxeOOa].

5, Effectiveness of the Log Reduction Scheme
In order to evaluate the effectiveness of the log reduction scheme we analyzed

the entire 220000 unique web requests by hand.
The access requests were classified into the three categories: normal, intru

sive and suspect as before. Furthermore the intrusive class was divided into
the seven subclasses discussed earlier. This further subdivision benefits the in-

60 Visualizing Intrusions: Watching the Webserver

Figure 4.8. The remaining accesses deemed to be intrusion attempts, 2D graph

Effectiveness of the Log Reduction Scheme 61

Figure 4.9. The remaining accesses deemed to be intrusion attempts, 3D graph

62 Visualizing Intrusions: Watching the Webserver

vestigation of the effectiveness of the log reduction mechanism since it avoids
reporting results that might indicate an overall satisfactory detection rate, but
on closer study turn out to be lacking in detection capability in any of the seven
areas7 A summary of how many of the different classes of attacks the log
reduction mechanism detected can be found in table 4.1.

Instances of the class suspect are not considered false alarms when they
occur in the output of the log reduction tool, but on the other hand will not be
considered missed attacks when they do not.

Attack
Formmail
Unicode
Proxy
Pathaccess
Cgi-bin
Buffer overrun
Miscellaneous
All attacks

Total
285
79
9

71
219

3
7

673

Alarms
282

79
5

16
17
2
2

403

Detection rate (%)
99

100
56
23

8
66
29
60

Table 4.1. Detection rates of the log reduction mechanism

As we can see in table 4.1, the log reduction mechanism faired well, it
managed to preserve evidence of all seven classes of attacks in the reduced
log. In light of these results we would not hesitate to claim the log reduction
mechanism a success from the point of view of detection rate, even though it
did not do spectacularly well in all classes, especially in the classes that were
most similar to normal traffic, which is only to be expected.

The discussion of false alarm rates is complicated by the fact that anomaly
detection is not actually done, but log reduction. The difference is that an
anomaly detection system reports on the absolute abnormality of a request,
while the log reduction system reports on the relative abnormality of a request.
The corresponding anomaly detection system would produce a variable number
of alarms indicating the level of intrusive activity, but the log reduction scheme
will always report the same number of "alarms" regardless, as a suitable number
of "alarms" are selected to perform visualization on. Thus the notion of false
alarm rate is not well defined in this context (see Chapter 4).

Table 4.2 below lists the absolute values of the number of attacks, normal
traffic and suspect traffic that are evident in the whole data set and in the reduced
log. As might have been expected the number of benign accesses in the reduced

^This might well have been the case since the distribution of different accesses in each of the seven subclasses
turns out to be highly skewed and so doing well in one class would skew the overall result.

Discussion 63

log is quite high. Circa 86% of the reduced log contains benign traffic. (Note
that this number would not correspond to i\\t false alarm rate, but rather the
Bayesian false alarm rate as defined in Chapter 4. The true false alarm rate
would be even higher.) This is acceptable since the number of accesses are
kept within reasonable limits for the chosen visualization method and the log
reduction mechanism has a sufficiently high detection rate.

Access type
Attacks
Normal traffic
Suspect
Total

All accesses
673

215504
115

220000

Alarms
403

4499
28

5200

Table 4.2. Summary of the true and false alarms of the log reduction mechanism

Note that it is pointless to compare the results from the system presented
here with that of popular signature based systems such as Snort [Roe99], since
these rely on previous external knowledge of intrusions. There is unfortunately
a dearth of suitable publicly available anomaly detection systems with which
to compare the results, though that would be more useful.

6. Discussion
How does the present method compare with spending the same amount of

time going through a false alarm list from an intrusion detection system? This
is of course difficult to answer, but one could argue that with the visualization
approach the user has spent time actually learning about the type of traffic the
webserver sees, knowledge that can be used to make the site run better/smoother.
This is not generally the case when watching the output of an intrusion detection
system.

This generalized knowledge—patterns that are distinct from benign traf
fic have been found, no benign traffic contains the kind of encoding that the
encoding attacks does—can of course be used to program a signature based in
trusion detection system. We conjecture this approach would work well, since
site-specific knowledge helps to identify what parts of these intrusions that are
unique to attacks and do not occur in normal traffic to that site. When perform
ing intrusion detection the best results are achieved when there is a model of
both the normal and the intrusive traffic [LXOl]. At the very least this knowl
edge can be used when tuning a signature based intrusion detection system,
something which is always necessary.

64 Visualizing Intrusions: Watching the Webserver

The anomaly based log reduction system faired well, and it is believed that
it would furthermore be difficult to try to circumvent it by injecting similar
fields in other fake access requests to try and drive up the frequencies of the
interesting fields. This is because such accesses would by their very nature not
be successful either as attacks, or as access requests. Taking the result code
(i.e. 404) into account when performing the log reduction would eliminate these
fake accesses. This would perhaps come at the cost of a decreased detection
of attempted intrusions. This could be addressed by looking at access requests
that were either successful, or unsuccessful, or similar access requests, some
of which were successful and some of which were not. Any "chaff' - access
requests by their very nature must be unsuccessful - are distinguishable from
other access requests (either benign or malicious), and that can be put to work
for detection.

On a different tack, we can amortize the cost of going through the unique
requests. When we look at the logs for the three months following our November
log, we see that they make on the order of the same number of unique requests
in themselves, but that many of these requests are similar to the ones in the
November file. Table 4.3 lists the number of previously unseen requests for the
months following November. Studying the requests themselves, many of these
only differ in a single component compared to their November counterparts,
and are easily dispensed with. Thus the number of unique requests we have to
process decreases nicely as we learn more and more about our particular web
server. If one has encoded the knowledge of uninteresting subtrees and patterns
that were discarded in previous investigations, then this number can be reduced
even further. It would be interesting to investigate how these requests should
be visualized to maximize the benefits of this amortization process.

Month
November
December
January
February

New access requests
200000

87000
66000
40000

Table 4.3. Number of previously unseen (new) accesses for the following months

Empirically in our data set the uninteresting access patterns are almost with
out fail very treelike in appearance, with no common tails to speak of, while
the opposite is true for the attacks. The reason seems to be that attacks that
show some diversity nevertheless share common features that may come at any
position in the request, while this is not true for normal accesses. In the case

Discussion 65

of the encoding attacks against IIS that we see it is the "payloads" i.e., the
commands that the attacker wishes to execute, that show many similarities—
greater similarities in fact than the encoded path that leads to it. In the case of
the spam attacks, it is the stereotype message delivered that is the key to the
late similarities. We conjecture that this would probably be difficult to avoid
for both types of attacks, there are only so many different commands to execute
with the desired effect, and only so many file system paths to get to them, so
there is bound to be a bottleneck (where the paths converge to a smaller set,
and the command set starts), giving the characteristic hour glass shape. In the
case of the spam attack the attacker could randomize the message as well, but
that would not elicit the same response from the recipient (human provoked
responses are the best indication of a 'live' address the would be spammer
could hope for). As there are only so many short sensible messages available,
the attacker would either have to generate them by hand, in which case there
wouldn't be as many (as the randomly generated addresses at least), or try and
generate them automatically, again leading to less diversity. So the hour glass
shape is likely to occur in one form or another there as well. On the other
hand the access to static legitimate web pages is of course highly tree-like in
nature, and hence does not elicit the same hour glass shape. Cgi-bin arguments
show more variation, but they don't in our experience contain the same clearly
identifiable tails as the attack patterns. In one example, the case of a collec
tion of scripts for conducting surveys of student opinion for courses taken, the
text of the messages, while sharing many words between different opinions,
still display much more variation, giving an almost random appearance, not
the typical hour glass shape of the suspect patterns. However, not all attack
patterns show this hour glass shape. The attacks with very little variation in the
attack types do not provide enough data for the pattern to emerge. It should be
noted that being subject to a large number of different variations of the same
kind of attack increases the possibility of the attack being detected with our
scheme, since there is more structure apparent. The opposite is typically true
of signature based intrusion detection systems have been programmed to detect
one type of attack (or at least a smaller range of attacks). Diversity in attack
method is good from our perspective.

A disadvantage with this approach compared to that of automated intrusion
detection systems is that the detection is not necessarily real time or near real
time. Especially if is decided to visualize the log in batches of one month at
a time. Of course, nothing prevents the operator from performing the visu
alization more often. The methods developed here must be modified for this
to work though, as we depend to some extent on having diversity available to
visualize, diversity that may not be present in the shorter run. Some form of vi
sualization of the differences between what we have seen previously and what is

66 Visualizing Intrusions: Watching the Webserver

new since then must be studied. This problem is analogous to the amortization
visualization mentioned earlier.

7. Future Work

The discussion has been limited to the types of different attacks seen in the
web log (the same request string could emanate from many different sources).
No attempt has been made to correlate the actual attacks with each other, or
cluster the same attacks originating from different sources to try and identify the
entity behind the attacks. Methods to do so already exist, and a visual method
is discussed in Chapter 7.

It would be interesting to devise methods of evasion as noted above, and
implement the suggested improvements to the log reduction to thwart them. It
would also be interesting to devise user experiments. These are more difficult
than one might at first think, since training on the specific tool often is very
effective for the outcome, and the task to be performed is complex and demands
some skill. This makes the experiment prohibitively costly.

8, Conclusions

In summary, the hypothesis that the combination of anomaly based log re
duction and visualization would provide us with the benefits of both approaches
while counteracting the drawbacks was supported. Furthermore the anomaly
based log reduction system could indeed be very simple and still successfully
serve as a front end to the visualization system. The hypothesis that visualizing
the structure of the requests strings themselves cut into components would en
able the operator to discard benign accesses with relative ease was supported.
There was less evidence for the corresponding hypothesis: that one could just
as easily identify malicious patterns. A few meta classes of attacks did ex
hibit features that set them apart from the benign traffic, but others did not to a
significant degree.

The presented method is relatively time efficient, and the operator learns
about the usage of the website. Notably unusual but benign (often dynamic)
traffic that is more varied and hence more prone to misclassification is studied
in more detail.

The work invested in parring down the graph can be amortized over subse
quent investigations, where the webserver logs for the following months contain
less and less new traffic, and hence can be visualized more quickly, especially
if one remembers what accesses were seen previously and why it was decided
to discard them as uninteresting.

Further Reading 67

9. Further Reading
There has not been much research into anomaly detection of web accesses

besides that by Kruegel et.al. [KV03]. They develop (as is done here) ad hoc
statistical methods for detecting anomalous request strings. Their model is
much more complex than the one presented here, taking many more parameters
into account while only one (the element frequency) is taken into account here.
As a result—as far as false alarm rates can be compared between a detector and
a log reducer—they are rewarded with a false alarm rate about a factor of forty
lower than the one reported here (and possibly a detector that is more resistant
to evasion attempts). Even so the authors report a problem with handling even
this level of false alarms, while the visualization method presented here enables
the user to quickly discard the uninteresting entries.

Chapter 5

COMBINING A BAYESIAN CLASSIFIER WITH
VISUALIZATION: UNDERSTANDING THE IDS

In this chapter^ we aim to develop an intrusion detection system to help
the expert quickly and accurately identify false and true alarms. We aim for
the expert user as it should be noted that the operator of any intrusion detection
system must have a rudimentary understanding of the assets that need protection
and common ways of attacking said assets.

In order to investigate this approach a prototype tool was developed where
the state of a Bayesian classifier is visualized to further an understanding, by
the operator, of exactly what the intrusion detection system is "learning", and
how that affects the quality of the output-e.g. in the form of false alarms. To
ascertain the effectiveness of the approach, an empirical study of the access
requests made to a fairly large public webserver was made, using the same data
studies in the previous chapter.

!• Automated Learning for Intrusion Detection
We have implemented an automated learning intrusion detection system that

for the sake of accuracy builds a model of both benign and malicious behavior.
Automated learning can be roughly divided into two major groups, supervised
and unsupervised. Most anomaly based intrusion detection systems fall into

the latter category, i.e. they automatically find clusters or other features in
the input data and flag outliers as anomalous. Relatively little investigation
in intrusion detection system research has been into the area of supervised
automated learning systems, [Pro03] being one exception.

Major problems with all self learning systems are the issues of over training,
i.e. where the system gains a too specific knowledge of the training set, which

^This chapter is a revised and extended version of [Axe04a].

70 Combining a Bayesian Classifier with Visualization

prevents it from correctly generalizing this knowledge given slightly different
stimuli, and under training where the system has really seen too few examples
on which to base any well founded decision about later stimuli but still classifies
as if it had. A goal of our approach is that the visualization of the inner workings
of the intrusion detection system will let the operator easily detect instances of
over and under training, so as to be able to deal with them interactively.

2. Naive Bayesian Detection
We have chosen to implement an intrusion detection system based on the

principles of Bayesian filtering in the same vein as now popular spam filtering
software, popularized by Paul Graham [Gra02].^

These simple classifiers operate as follows: first the input is divided into
some form of unit which lends itself to being classified as either benign or
malicious (in spam classifications typically a piece of email is considered), this
unit of division is denoted a message. It is the responsibility of the user to
mark a sufficient number of messages as malicious/benign beforehand to effect
the learning of the system. The system is thus one of supervised self learning.
The message is then further subdivided into tokens—in an email typically the
words of the text that makes up the email and various elements of the header.
The tokens are scored, such that the score indicates the probability of the token
being present in a malicious message, i.e. the higher the relative frequency of the
tokens occurrence in malicious messages, relative to its occurrence in benign
messages, the more indicative the token is of the message being malicious. The
entire message is then scored according to the weighted probability that it is
malicious/benign, given the scores of its constituent tokens.

One can parameterize the scoring of the tokens in a number of ways. We
have chosen a simple method that closely follows Paul Graham's presentation:

Let the total number of benign messages seen thus far be denoted by good,
and the total number of malicious messages be denoted by had. Furthermore let
the number of times the token has appeared in benign and malicious messages
be denoted by g and h respectively (i.e. if it has appeared twice in the same
malicious message that is counted as two occurrences). Then the score of
the token is calculated as: scove — b/bad-\-g/good' ^^ both b and g are zero
then score = 0.5, i.e, if we have not seen the token before, then it is given
a neutral score of 0.5, meaning that it is indicative of neither a benign nor
a malicious message. The tokenscore is furthermore restricted to the range
[10~^, 1 —10~^], to prevent division by zero when the entire message is scored. A
token is thus never considered perfectly indicative of a benign nor a malicious

^It should be noted that this rudimentary form of Bayesian learning should not be confused with Bayesian
learning network algorithms such as employed by the intrusion detection system eBayes [VSOO].

The Experimental Data 71

message, even though the scores will be referred to as 2i perfect 0.0 or 1.0 for
clarity in the remainder of the chapter. It should be noted that one does not
actually mark tokens as being benign or malicious, only messages. The score
of the tokens is inferred from the number of times it occurs in benign and
malicious messages.^

The entire message is scored according to the following formula:

n n n

Pmalicious ^ Y[Pi/{YlPi + Yl(^ " P'^'>'>
1=0 i=0 i=0

where n is the number of tokens in the message and p i , . . . Pn are the respective
scores of the tokens.

So the score of the message (i.e. probability the message is bad) is the
weighted probability of the probabilities that the tokens the message consists
of are indicative of a bad message.

In order to apply this principle to an intrusion detection system, one would
typically present it with examples of malicious and benign activity and then
when the system is trained, present it with unknown input, flagging all messages
that scored higher than a set threshold score as intrusive. A more elaborate
approach is taken here as will be seen in Section 4.

3. The Experimental Data
For the experiment, we have chosen to study a webserver access log as

described in Chapter 4, page 49.
Even though the choice was made to study webserver logs the longer term

aim is that the general approach developed here should generalize to other
monitored systems. It should be noted that the tool is agnostic in this respect,
placing few limitations on the form of the input data."̂

As mentioned in Bname, there is a dearth of publicly available corpora
suitable for intrusion detection research, and the de facto standard, based on
the Lincoln Labs intrusion detection system evaluation [LGG+98] (despite its
flaws [McHOO]), is unavailable to us as it is export controlled. Other publicly
available data such as the Defcon Capture the Capture-the-Flag data is not ana
lyzed, and hence it is difficult to base any investigation into the hit/mis-rates of

^As the dependent probability is never actually calculated (due to efficiency concerns, we would then have
to consider the new token given the probability of all preceding tokens, which would lead to a state space
explosion) calling this method Bayesian is a bit of a misnomer but is standard nomenclature.
"̂ That said, lower level, more machine oriented logs may not be the best application of this method. Even
when converted to human readable form they require detailed knowledge of e.g. protocol transitions etc. Of
course, fundamentally the logs have to make sense to someone somewhere, as any forensic work based on
them would otherwise be in vain. Another problem is that of message sequences where the sequence itself
is problematic, not one message in itself as the Naive Baysian classifier does not take the order of tokens
into account.

72 Combining a Bayesian Classifier with Visualization

an intrusion detection system (or train an intrusion detection system) on it. The
same is true of anomaly based systems with which to compare our results. We
feel it would be pointless to compare our approach to a signature based system
e.g. Snort ("http://www.snort.org") because it relies on external knowledge

in the form of intrusion signatures that a human analyst, external to the system,
has provided.

The university departmental webserver under study was running Apache
version 1.3.26. It was set to log access requests according to the common log
strategy. The log thus consists of a line based text file with each line representing
an single HTTP access request. The fields logged were originating system (or
IP address if reverse resolution proves impossible), the user id of the person
making the request as determined by HTTP authentication , the date and time
the request was completed, the request as sent by the client, the status code (i.e.
result of the request), and finally the number of bytes transmitted back to the
client as a result of the request. The request field is central. It consists of the
request method ("GET", "HEAD", "CONNECT", etc), followed by ihtpath
to the resource the client is requesting, and the method of access ("HTTP 1.0",
or "HTTP 1.1" typically). The path in turn can be divided into components
separated by certain reserved characters [FGM+99] .

Recall again from Chapter 4that the log for the month of November 2002
has previously been studied in detail. The resulting access log contained circa
1.2 million records. Cutting out the actual request fields and removing dupli
cates (i.e. identifying the unique requests that were made) circa 220000 unique
requests were identified. It is these unique requests that will be studied in the
rest of the chapter.

The reason the unique types of requests are studied instead of the actual
request records is that we are more interested in the types of attacks that are
attempted against us than the particular instance of the attack. This provides
a degree of generalization even in the setup of the experiment as there is no
risk of learning any irrelevant features that are then (perhaps) difficult to ignore
when trying to detect new instances of the same type of attack later. Note that
an entity, e.g.. a worm, that lies behind an actual attack often uses several types
of attacks in concert.

Chapter 7describes a method for correlating attacks against webservers to
find the entity behind them when one already knows of the particular attack
requests being made. It should be noted that no detection capability is lost
in this way, since knowing the type of attack being performed it is trivial^ to
detect the instances later, should one chose to do so. The choice was made to

^The one type of attack that we can think of that would not be detectable is a denial-of-service attack making
the same request over and over. Since this would be trivial to detect by other means this is not seen as a
significant drawback.

http://www.snort.org

Visualizing a Bayesian IDS 73

ignore the result code as many of the attacks were not successful against our
system, and the result codes clearly demonstrated this. Ignoring this information
actually makes our analysis more conservative (it biases our analysis toward
false negatives).

Not all possible attacks against web servers would leave a trace in the ac
cess log, e.g. a buffer overrun that could be exploited via a cgi-script accessed
through the POST request since the posted data would not be seen in the access
log. Unfortunately the raw wire data was not available; there is nothing really
preventing the use of the intrusion detection system on that data, after some post
processing. It should be noted however, that few current attacks (targeting web
servers that is) are of this type (see Chapter 7) and that there were a multitude of
attacks in the access log data with which to test the intrusion detection system.

4. Visualizing a Bayesian IDS
An important problem with self learning systems is that they can be opaque

to the user of the system, i.e. it is difficult for the user to ascertain exactly what
has been learned and hence to judge the quality of the output. The problems of
not really having the human in the loop when making decisions using decision
support systems has been noted in human-machine interaction circles for some
time [WH99, RDL87]. The operator that does not have a relatively correct (or
at least consistent) mental picture of the state of the machine he or she is inter
acting with will not perform well, probably resorting to ignoring the system he
is put to monitor. This problem has also affected anomaly detection systems
before, where several systems tested on the Lincoln Labs data (discussed in
section 3) seemed to operate well within parameters, but in fact picked up on
idiosyncratic differences between the malicious and benign examples in the
synthesized data instead of features that would hold were the systems subjected
to realistic data [MC03]. It is possible that this effect would have been discov
ered sooner had the actual learning done by the systems been more accessible
to the operators.

The problem is further complicated in the case of intrusion detection because
of the base-rate fallacy described in Chapter 3, i.e. that most alarms will tend not
to be a true indication of malicious activity unless the intrusion detection system
has a very low false alarm rate. Hence the correct identification of false alarms
is crucial for the operational effectiveness of an intrusion detection system.
Bayesian self learning systems are not immune to these problems if employed
in a naive fashion, i.e. when the system is trained in a "batch" fashion, where it
is first presented with several examples of intrusive behavior and then several
examples of non-intrusive behavior, to finally be applied to unknown input,
delivering only (in the worst case) alarm/no alarm as output to the operator. A
natural improvement is to display the score to the operator, but in practice this
is only slightly more helpful. As anecdotal evidence we submit the following:

74 Combining a Bayesian Classifier with Visualization

when the author first started using the Bayesian spam filter recently added to the
Mozilla C'http://www.mozilla.org") email client, the filter seemed to learn the
difference between spam and non-spam email with surprisingly little training.
It was not until some rather important email was misclassified as "spam" that
it was realized that what the filter had actually learned was not the difference
between spam and non-spam, but between messages written in English (by the
second author) and the first author's native tongue. In fairness given a few more
benign examples of English messages the system was successfully retrained and
was again correctly classifying email, but some rudimentary insight into exactly
what the system had learned would have made us more skeptical of the quality of
the classification, even though the classifier seemed to operate perfectly judging
by the output.

To that end a (prototype) tool named Bayesvis was implemented to apply the
principle of interactivity and visualization to Bayesian intrusion detection. The
tool reads messages as text strings and splits them up into the substrings that
make the tokens. In the first version of the tool URL access requests make up
the messages, and they are split according to the URL field separating characters
(; / ? : 0&=+, $) but with little modification the tool could accept any input data
that lends itself to being split into messages (perhaps marking sessions) and
tokens according to its textual representation. Figure 5.1 is a screen dump of
the user interface of the tool.

The learning that is performed by a Bayesian system of the kind modeled
here, is encoded in the score of the tokens the intrusion detection system uses
to score the messages. Therefore the scores of the tokens are visualized as their
textual representation (black text) on a heatmapped background [TufOl]. A
heatmap maps a real number (in our case the probability of the token being
indicative of a malicious message, i.e. p = [0,1]) to a color on the color wheel,
from green via yellow to red that is, the hue of p—in HSV coordinates—is
mapped onto the range [180^, 0^], fully saturated, and as close to the whitepoint
as possible. The total score of the message is visualized in the same manner
and also an indicator of whether the user has marked this message as benign
or malicious.^ One would think that color blindness could be a problem in
accessing our visualization (some two to eight percent of all males suffer from
defective color vision depending on the group under study—impaired color
vision is relatively more common in academia for example), but it turns out that
making a simple modification; mapping onto the 'right' half of the color wheel,
from green to red via blue, instead of via yellow, will make the presentation

^Unfortunately the human eye is much better at discerning between different colors than levels of gray, so
a gray scale mapping for the purpose of this presentation is less effective at conveying the nature of our
visualization. It is suggested that the figures be viewed in the on-line, color version.

http://www.mozilla.org

Visualizing a Bayesian IDS 75

0.5
0.5
0.5
0.5
0.5
0.5
0.5
10.5
0.5
0.5
i0.5
10.5
lo.o
10.5
10.5
0.5
l0.5
0.5
0.5
[0.5
10.5
[0.5
|0.5
10.5
0.5
O.S
io.5
[0.5
[0.5
0.5
iO.5
[0.5
[0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5

GET
GET
GET
GET
GET
GET
GET
GET
GET
GET
GET

0.000 GET
0.000 GET
0.Ö0O GET
0.ÖO0 GET
0.000 GET
ti.OCO GET
O.OdO GET
O.OOO GET
0.000 G£T
0.000 GET
0.O0Ö £̂ T
0.692 GET
0.692 GET
0.692 GET
0.692 GET
0.692 GET
0.692 GET
0.000 GET
0.000 GET
0.000 GET
0.000 GET
0.000 GET
O.OOO GET
0.000 GET
0,000 GET
0.000 GET
0,000 GET
0.000 GET
0»000 GET
0.000 GET
0.000 GET

!TTP7|i
iTTP/H
IP/fm

ITTP/M
ITTpJi

/?f7E«iT»/GF/dbc/oauaGUi«anuai/JavaGUri»^x« IF lios/arch iLoctare.JPG HTTP/Ml
/rf?E«prio/a^/doc''javaGUI>tofvjai/JavaGUI»»anualFiiiss/GUIco«ponerits.JPG HTTP/Bi
/üTEaame/GF/cioc/oavaGUInanuai/javaailMnuaiFiles/languagesl.JPG HTTP/M|
/SrTtaomo/GF/cfoc/javaGUInanual/JavaGUlMnualFlles/laneuaeesS.JPG HTTP/HI
/!fiC^wrr>e/GF/tioc/Jaya(^Il.anLMll/>.v»GUIPM>nL>«lFiles/^ew.JPG HTTP/Mi
/Äf?ElM>m«/GF/t*OC/J«waGUImarxal/javaGUI»MVTuoIFiles/newTopacl.JPG HTTP/I
/;t7Eiwroe/GF/cJoc/Jai'aajlBantjal/Jav»GUIi»anuÄlFllBS/oowTopic2.JPG HTTT
//tTEaame/GF/ctoc/JawaGUIPWiual/JavaGUIPWiualFiles/rofine2.JPG HTTP/1
/XTEaame/GF/doc/Jav»GU>dnuaI/javaGUlMTKjaIFilas/rafine3.JPG HTTP/l
/XTEacnmo/GF'/cJoc/jawaaJIiwinual/JavaCUIPMinualFiles/refine.JPG HTTP/JT
/XTEamra/GF/Tutorlal/ovo-rus.glf HTTP/l
/XTEaamo/GF/Tutorial/©TO-tex.i i f HTTP/l
/ffTE^mrw/&F/Tutorial/gf-logo.eif HTTP/l
/XTEamme/GF/Tutorial/Integrall.gif HTTP/1
/;f7E«orr«/GF / Tutor la 1 / Inte« ra 12. g if HT Tp/1
/jr7E*ame/GF/Tutorial/predc«lc.gif HTTP/l
/?f7Eandre i /d ic t lonary / index .eg I'̂ Eng 1 ish=Acqiiiree.Encod ing= 1251 HTTP/l.O
/XTEandre i /d i c t ionary/index.eg i^^ng1ish=alignaEncod ing=1251 HTTP/1.0
/?f7Eandroi/dletionary/index.cix'^ni1ish=al1ignaEncoding=1251 HT TP/1.0
/:i7Eaodrei/dictionary/index.cei'?English=alohaeEncoding=1251 HTTP/1,0
/XTEondre i /d ic t looary / index. eg I'̂ Eng 1 i sh=beoke.Encoding= 1251 HTTP/1.0
/XTEandre i /d ic t ionary/index,eg i^Eng Ush=because8.Encod ing=kol9 H T TP/1,0
/X7Eandrei/dictionary/index.cgi''English=beholdaEncodir«=1251 HTTP/1.0
//(7Eandrei/dlcHooary/index.cgi'?£ngll£h=belngaEricoding=koi8 HTTP/1.0
/XTEandrel/d ic t ionary/index.eg i-̂ Eng lish=blahhhhhaEncod ing=koi8 H T TP/1,0
/XTEandre1/d ictionary/index.eg iTEng1ish=co »PorwEncod ing=ko i8 H T TP/1,0
/XTEandre 1 /d ic t ionary /index .eg i'̂ Eng 1 Lsh=crazu8.Encod ing=koi8 HT TP /1.0
//TEandrei/dict ionary/index,cg t?Eng1ish=crustacean8.Encoding=1251 H t TP/i.0
//f7Eandrei/dictlonary/index.egi'^ngllsh=daitp8-Etxxidlng=1251 HTTP/1.0
/XTEandre i/dictIonary/index,eg i'^ngllsh=decapodeEncoding=1251 HT TP/1,0

ira
Skip [F i n d] j GET /scripTs7!%cO%qfr7WinWsysl^

Figure 5.1. The Bayesvis tool

accessible to a large percentage of those that suffer from the common forms of
red-green color blindness [TufOl]. This variation is not yet implemented.

Once the user has visual access to the internal state of the classifier, and hence
can start to form an opinion of the learning process, it is tempting to let the user
interactively guide the learning process, in our case by marking messages on
screen as either malicious or benign. In order for this to be practical, the
experience must be seamless; ideally the user should not experience any delay
between her action and the time the result is displayed on the screen. With a
few notable exceptions this requirement has been met and the updating of the
state of the messages is instantaneous on reasonably current hardware.

In order to present the ideas embodied in the prototype we give a quick
presentation of the user interface, as user interaction is its raison d'etre. The

76 Combining a Bayesian Classifier with Visualization

user interface can be divided into a few major groups roughly corresponding to
the controls from top left to right, top to bottom in Figure 5.1.

Saving/loading Via the file menu, the user can save and load a session, but
more importantly append new messages (imported as text files) to the end
of the current session. The user can also clear the actual messages from
the current session, but keeping the tokens and their scores. This enables
the user to append new data for classification, without having the display
cluttered by the training data.

Marking messages The main window of the display lets the user select mes
sages by left clicking on them,^ and marking them as either good, bad, or
neutral. By default the messages are marked as neutral when first imported.
The display is divided into three columns. The first contains a marker that
display the state of the message: 0.0,0.5 and 1.0 depending on the message
being marked good, neutral or bad respectively on a heatmapped back
ground. The intended mnemonic is the score the resulting tokens would
have, were they part of only one message of the indicated type. The second
field is the Bayesian score of the message (also on a heatmapped back
ground), indicating the relative ''badness'' of the message as a whole. The
third column fills the rest of the horizontal screen estate and consists of a
heatmapped display of the tokenized message. The characters that separate
the tokens, and hence are not part of the scoring process (they have no score
of their own) are also displayed, but on a white background. This serves
to separate the heatmapped tokens from each other visually, and to provide
the original data, without fooling the user into thinking that the separating
characters are somehow part of the detection process. The user can choose
to display the actual scores of the tokens in curly braces after the tokens
themselves.

Sorting The user can opt to sort the messages alphabetically (optionally in
reverse order), but perhaps more interesting is the ability to sort according
to message score. Since this tool provides a visual display of the scores in
descending order, a cut-off score as in an anomaly based intrusion detec
tion systems has not been implemented. Instead users can sort messages
according to score and view them in order, deciding for themselves when an
uninteresting level has been reached. The last sorting option is the option
to sort according to the marking of the messages, with the ordering good
< neutral < bad. This is useful during a training or scoring session to
quickly find misclassifications inxxmisclassification (messages with a good

^A range of messages can also be selected by click dragging or shift clicking, which is useful when we are
training the system on a large corpora of already know malicious accesses as we are in this paper.

Visualizing a Bayesian IDS 77

(green) score that one has marked bad (red) will stand out visually among
the correctly classified messages). The sorting functions in general and the
sorting of scores in particular are exceptional in that they do not provide an
instantaneous response like the other functions of the system - although the
response time is still reasonable.

Searching At the bottom of the screen is an ordinary sequential search function.
More interesting is the skip capability used for skipping similar messages,
especially when dealing with semi tree like data as is done here.

In Figure 5.1, a few examples of bad and good access requests have been
loaded. The user has marked three malicious requests as malicious (which can
be seen in the left most column) and one request as benign. As a result all
malicious requests have been correctly classified as malicious (they all have a
perfect 1.0 score), and most of the benign requests have been marked as benign.
A few toward the bottom of the page still have a high score (having a score of
0.692), and the next step would be to mark the first of them as benign and
see how that would influence the rest of the misclassified requests. Figure 5.2
displays the Bay es vis after this update has been made.

It is interesting to note that had a batch oriented system been trained with
these examples and just the scores been observed we could well have been
pleased thus far as all the other benign requests have a perfectly benign score of
0.000. However, when looking at the heatmap of the tokens of the last requests
it becomes clear that the reason behind this is the token "1.0" which receives
the perfect 0.0 score, and this dominates the score of the request as a whole.
As it happens, in the requests upon which the system was trained the token
"1.0" appears once, in a good message, and never in a bad message, and this
serves to give it a perfectly benign score. As the system has never seen any of
the other tokens in the requests they default to a score of 0.5, which is to say
that they are not indicative of anything. To the human analyst using the tool, it
is abundantly clear that the last requests here are correctly classified more by
coincidence than anything else. The system does not really have enough input
yet to say with any reasonable degree of certainty that these requests are benign,
and more training is called for. Figure 5.3 shows Bayesvis after the first of the
under trained accesses have been marked as benign.

Contrast this training of benign requests with the malicious requests. As it
happens just marking the first request in Figure 5.1 correctly classified all the
malicious requests. In this case it is because of the tokens of the pay load, i.e. the
tail of the request that tries to execute a command interpreter on MS Windows
operating systems (see section 5 for more details of this type of attack). A
few more requests were marked to increase the level of training of the tokens
that precede the payload. In this case it is quite apparent to the operator that
the detection is of a higher quality given the training set, since the tokens that

78 Combining a Bayesian Classifier with Visualization

File Help

Bayesian URL visualisation

Good Neutral Bad • Display scores G/N/B Alpha

iO.5
0.5

0.5
0.5

0.5
[0.5
10,5
0.5
0.5
0.5
0.5
to.5
0.5
10.5

0.5
|0.5
:0,5
0.5
0.5
0.5
b.5
10.5
iO.5
:0.5
iO.5
•0.5
0.5
p .5
10.5
i0,5
|0.5
iO.5
iO.5

IG£7
GET
GET
K T
GET
GET
GET

i.OtX) GET
tJX^ GET

I GET
GET

! GET
GET

UOm GET
t » 0 (^ GET
1.00Ö GET
l.OCft) GET

I GET
GET

. \ GET
1»0(XÜ GET
U^m. GET
0,000 GET
0,000 GET
0.000 GET
0.000 GET
O.fXX) GET
0»000 GET
0,0(X) GET
0.000 GET
0.000 GET
0.000 GET
0.000 GET

• 'Scr ipts/4

/PBServer / , .K^35c, .X%35c. .%;i35cwinnt/j

/•/nMHHHHHMHMMMn/r-
y. .XX35X63. .;{;<35X63. .XXSSPiGSwinnt /a^=ste

iPt <:./'',./icO/i^f ..:•''wir«^t..•'"üys^befi;32.• • cf<id. &xe' -'
./icOJiaf.. I .•'' wirr.t. /• systtÄ [«32/0 («d. exe'"'
. ; icO;iqf. . / y i ü | / Ä t e N 3 2 / c ^ J .exe'"

/^ptÄftt32/''cffid .exe'''
/^ .ef»32/ 'cwH.exgn;/ j

/ s c r i p t a / . .?icl?i8s. . /wlrr i t /g;^st :«f f i32.- 'Df id.^?/

/ i ^ i m t , s-ysten^S: ei.d ,Qye^/ i+?f l f f+ i : HTTP/1. i
, /w imt /sy f f te (^32. ctad.«xe"'/c^dir^ HTTP/i.O

1 : H T T P / i . l
HTTP/1.1

" » x e " / c + d i r + i : HTTP/1.1
j : HTTP/1.1

/ • ^ • + | : HTTP / i . l
: H T T P / i , i

HTTP/1,1
d i . ' ' + i : \ \ HTTP/1.1
di-r HTTP/i.O
•dir+B: HTTP / i . l
d i r - c : HTTP/1.1

HTTP/1.0

/ » c r i p N / .
/ s c r i p t s . .

I: HTTP/1.1
: HTTP/1.1

H T T P / i . l
HTTP/1.1

HTTP/1.1
HTTP/1.1

HTTP/1.1
/t*Wti*V. HTTP/1.1

Xcl^iSc.
'•scriiöt«/..Xcl/i9c.
/ s c r ^ t s - / . ^XoVÄB?,, /,winnt/systei ' i32. ctnd.exe"'
/ecTi45t3s/. . ; ic l%pc. . 'Btlilifti/igBa.efe32/cmd .exe'"'
/ s c r i p t s ! / . . ^eOX80; iaF77 /BM/ lys teB32, cittd.e«
/ s c r i j o t d / , //SOXeOXQOXaf \ . /Ä i? i t /»yst©f f l32. CNCIJ
/ s c r i p t s ^ . .Xf8/i80;^G0?i80?iaF. ./pinä-it/syÄt6Bi32/D^
/ . sc r ip t« ; / . .;ifc?i80;i80%80;i80%af../yinnt/sy5ttew3.?/i
/X '7Eaarne/c tec/pt i3 l icat ions.ht« i HTTP/i .0
/X7Eaarne/GT/doc/JayaGUImanual/JayaGUImanualFi les/architecture.JPG H T T P / i . l
/%7Eaarne/GT/doc/JauaGUImanual/JauaGUImanualFiles/GL)IcDfrtponents.JPG HTTP/1 , |
/^7Eaame/(3^/doc/JavaGUImanual/JavaGUImanuaiFiles/languagesl.JPG HTTP/1.1
/KTEaarrie/GF/doc/JavaGUImanual/jayaGUImanuaiFlies/languages2.JPG H T T P / i . l
/XTEaame/GF/doc/Jav/aGUImanual/JauaGUImanualFiles/neu,JPG HTTP/1.1
/%7Eaarne/GT/doc/JayaGUImanual/JavaGUImanualFiles/neuTopicl.JPG HTTP/ i . l
/%7Eaarne/GF/doc/JavaGUImanua1/JavaGUImanualFiles/neuTopic2.JPG HTTP/1.1
/?f7Eaarne/G^/doc/javaGUImanual/JavaGUImanualFiles/reFine2.JPG HTTP/1.1
/XTEaarne/GT/doc/JavaGUImanual/JavaGUImanualFiles/reFine3.JPG H T T P / i . l
/^TEaarne/GT/doc/JavaGUImanual/JavaGUImanualFiles/reFine.JPG HTTP/ t . l

.0 0.000 GET / '%7Eaarne/a=" /Tutor la l /evo-rus.« l f H T T P / i , l
O.OCK) GET /x7Eaamc/GF/Tutorial/evo-tex.gif HTTP/i.t
O.OCS) GET /%7E»arne/GF/Tutorial/gF-logo.gif HTTP/i.l
0.000 GET /X7Eaarne/GF/Tutorial/inLegrall.gif HTTP/1,1
0.000 GET /X7Ea«rne/GF/Tutoriai/integral2.gif HTTP/i.l
0.000 GET /%7Eftarne/S^/Tutoriai/predcaic.giF HTTP/i.l
0.000 GET /^7Eandrei/dictionary/index.egi?English=ftcquire8<Encoding=1251 HTTP/i.O
O.OCO GET /?;7Eandrei/dictionary/index.cgi?English=align8.Encoding= 1251 HTTP/1,0
O.OCtö GET /^7Eandrei/dicLionary/index.cgi?Engiish=allign8.Encoding=125i HTTP/I.O
O.OC» GET /X7Eandrei/dictionary/index.cgi?Engiish=alohaS.Encoding= 1251 HTTP/I.O
0.000 GET /X7Eandrei/dictionary/index.egi?Engiish=beak8<Encoding= 1251 HTTP/1.0
0.000 GET /X7Eandrei/dictionary/index,egi?English=becauses.Encoding=koiS HTTP/l.Ö
0.0(X} GET /^7Eandrei/dictionary/index.cgi?English=behold8,Encoding=1251 HTTP/i.O
0.0(X) GET /?;7Eandrei/dictionary/index.egi?English=being&Encoding=koi8 HTTP/1.0
O.OCK) GET /%7Eandrei/dictionary/index.cgi?Engiish=blahhhhh&Encoding=koi8 HTTP/l.Ö
0,000 GET /%7Eandrei/dictionary/index.cgi?Engiish=common8.Encoding=koi8 HTTP/1.0
0.000 GET /X7Eandrei/dictionary/index.egi?Engiish=crazys.Encoding=koi8 HTTP/1.0
O.OCO GET /;;7Eandrei/dictionary/index.cgi?English=crustacean8.Encoding=1251 HTTP/i.i
O.OOO GET /%7Eandrei/dictionary/index.cgi?English=damp&Encoding=1251 HTTP/1,0
Q^ÖÖQ GET /;i7Eandrei/dictionary/index,cgi?English=decapode.Encoding=1251 HTTP/l.Ö

iE
Skip I Find I [G J T /%7Eaarne/GF/Tutorial/evo-rus.gif HTTP/1.1

Figure 5.2. The Bayesvis tool after retraining on false alarms

are marked are quite significant given the type of flaw that is being exploited.
In this small example, the strengths and weaknesses of the learning process

Visualizing a Bayesian IDS 79

Bavestan URL visual isat ion

File Help

Good Neutral 1 Bad • Display scores G/N/e Alpha

Ti.5

0.5
0.5
0.5
0.5
0.5
0.5
0.5
iO.5
0.5
;0.5
10,5

Ö«0
0.5
0.5
0,5
0.5
0,5
0,5
0.5
0,5
0,5
0.5
0 .0
0.5
0.5
10,5
|0.5
0,5
0«0
0,5
0,5
0,5
0,5
0,5

0,5
0.5
0.5
0,5
(0.5
0.5
0,5

0.5 • •
ii^ mm

GET
l,0(Xi GET
l.CKO GET

GET
GET
GET
GET

i*(X^ GET
i.OOO GET
i,0(X) GET
UOOO GET
UCOÖ GET
l .OX) GET
UOOO GET
1,000 GET
1,OCO GET
1.000 GET
1,000 GET
1,000 GET
1.000 GET
X.OO0 GET
1,000 GET
0 .000 GET
0 .000 GET
O.CXKD GET
0 .000 GET
O.CKPO GET
O.OX) GET
O.OK) GET
0.000 GET
0.000 GET
0.000 GET
0.0(X) GET
0,000 GET
0,0<X) GET
0,000 GET
0,000 GET
o.(xo GET
0.000 GET
O.OK) GET
0.000 GET
O.OCK) GET
O.OCK) GET
0,0(X) GET
0.000 GET

.•scrifT'ts/. .^cl^Ss.
/(?6n^Ä?^/..^cl/i9c.
/scripts..XclXSc. SCl^P^

'BHBBBj'

1: HTTP/i,i;
HTTP/1,1

/M*jm*i: HTTP/i.l
; HTTP/1.1

7/|+M-^|: HTTP/1,1
; HTTP/1,1

HTTP/1.1
:\\ HTTP/1.1

HTTP/i.O

I : HTTP/1.1
: HTTP/1,1

HTTP/1.0
HTTP/1,1
HTTP/1.1

HTTP/1.1
HTTP/1.0

HTTP/1.1
HTTP/1,1

HTTP/1.1
l l HTTP/1.1
• l i L HTTP/i.l

/ F Ä + I : HTTP/1.1

/ I
/ |
/PBServer / . /AXZSc. X/35c. .7,

/ • / . .X%35;i63. /Ay35XS3. .X;i35%63uinnty|
/BB/..X?i35c..;iX35c. .%^35ctüinnt/r
/"ipts/TTKciJ.Jat-. .;/M"ImT/
.•'script's.-'. .%cO*iaf, .••''t.annt/5'jst?(r!32.--'cfivrJ4i
.••'scr ip t5 . ' . .XcOXaf •./f'iinnt/sy«tei«i'i2.-'cffid*«
• ' scr ip t«/ . .XcOPiqf., /winr-jt/Si^Ätefii32.''
.•'iscript^e/. .Xcl/ i lc . . /yini-i't/sy^t&ft32.''i:;md,!
scrli:<tJi/, .XclXlc.. /üinrjt/syst.eK.Ö2.' cp^d,!

/ uinnt .'•' 5UÄt a fh32 .•' crd ̂ i
/ uinnt .•' s ust« »32 .• 'ctvi^

/trfirint/&ystem32/cHci.^.

J/ , .XcVAaf., /winnt./'st.iste«32/ct»d*! ^

/ ser ip t« : / . .Xe0;i80;;af.. /silnoi/isystsM^S/cacl .e>5
, • sor iiot«;/ . . ;!:f o;i8o;;ao%af.. / i * t o t /Rysay?i«>32 /i
..•sorifätsV. ,^f8;i80;i80^80;iaf.. /wMl^M^^^^^^<^*^
.•'storii:*^/. //ScZQOZB0X&0y,QOy,afT7iW^^ysitetn32/cn
/X7Eaarne/doc/pubiicatiOTis.htnl HTTP/1.0
/X7Eaarne/GF/doc/jauaGUIfnanuai/JavaGUImanualFiles/architecture,JPG HTTP/1.1
/^7Eäarne/GF/ctoc/JavaGUImanual/JavaGUImanuaIFiles/GUIcomponents.JPG HTTP/1,1
/?i7Eaan^e/GF/doc/javaGUImanuai/JavaGUImanualFiles/Ianguagesl.JPG HTTP/1.1
/X7E^rtTe/GF/doc/JavaGUImanual/JavaGUIrnanualFiles/ianguages2.JPG HTTP/l.i
/?i7Eaame/GF/doc/javaGUImanual/JavaGUImanualFiles/new.JPG HTTP/1,1
/Ü7Eaarne/GF/doc/JävaGUImanuai/JavaGUImanualFiles/newTopicl,JPG HTTP/1,1
//i7Eaarne/GF/doc/JavaGUImanual/JavaGUInianualFiles/newTopic2,JPG HTTP/i,l
/X7£aarrw!/GF/cfoc/jayaGUImanuai/JavaGUIwanualFiles/refine2,JPG HTTP/1,1
/X7Eaarne/GF/doc/javaGUImanual/JavaGUImanualFiies/refine3.JPG HTTP/1,1
/X7Eaarne/GF/doc/JayaGUImanual/JavaGUIrnanualFiles/refine.JPG HTTP/1,1
/X7Eaarne/GF/Tutorial/evo-rus.glf HTTP/1,1
/X7Ea«rn©/GF/Tutoriai/evo-tex.gif HTTP/l.i
/;^E«arr*e/GF/Tutorial/gF-logo.gif HTTP/l.i
/? ;7Eaarr^/GF/Tütoriai / integral l ,gif HTTP/i.l
/?;7Eaame/GF/Tutoriai/ integrai2.gif HTTP/i,i
/;f7Eaan-ie/GF/Tutorlal/predcalc.gif HTTP/1.1
/X7E«Tdrei/dictimary/inctex.cgi7English=Pcquire&ErK;oding^l25t HTTP/1.Cf
/5;7Eandrei/dictionary/index,cgi?Engiisi-Falign&Encoding=i251 HTTP/1.0
/X7Eardrei/dictionary/irtdex.cgi?EngiiS'h=aliign8.&-icoding^l251 HTTP/1.Q
/X7Eandrei/dictionary/index.cgi7Ensiish=aioha&Encodinfe-1251 HTTP/1,0
/X7EattTdrei/dictionary/it-M:iex.cgi7Ensiis-h=^beak&Encodins=i251 HTTP/i.O
/Jf7E«Tdrei/dletlorvarM/index .cei7EngXish=because&Encodins=koi8 HTTP/1.0

0.000 GET /%7Ea!'vdT^i/dictlonarH/irwtex.c«i?Enfflish=:beholde£ncodim=1251 HTTP/1.
0,000 GET /X7EÄ^rei/dictior«ry/irKtex
O.CXJO GET /?:7E«tfxirei/dictionöry/index
O.OX» GET /X7Eandrei/dictionary/irxtex
O.CXK) GET /?;7Eandrei/dictiorian,j/irKtex
0.000 GET /X7E«ndrei/dictionary/index
0.000 GET /%7£a^rei /d ic t ionary/ index
0*000 GET /SCTEendrei/dictiorkiry/index

*cgi7English=being&Encodir^Fkoi8 HTTP/1,0
.cgi7English=blahlnhhh&Encoding=koi8 HTTP/1,0
,cgi7English=common8.Encodit'»g=koi8 HTTP/i.O
cgi7Engiish=crazy&Ercoding=koi8 HTTP/1.0

,cgi7EngUsh=crustaceanaEncoding=1251 HTTP/1.0
cgi7EngiishFdampe<£ncoding=125i HTTP/i.O

,c«i7English=decapod8.Encoding=1251 HTTP/1.0

IE
Skip Find I JGET/%7Eandrei/dictionary/index.C9i?Engnsh=behold&Encoding=1251 HTTP/1.0

Figure 5.3. The Bayesvis tool after having corrected under training

become visually apparent, and the operator can respond interactively to correct
the instances of under training seen, in doing so receiving immediate feed back
(click-by-click literally) and taking into account the new state of the intrusion

80 Combining a Bayesian Classifier with Visualization

detection system, before performing additional updates. This would not be true
of a more traditional intrusion detection systems working along the same lines.

Figures 5.1,5.2, and 5.3 contain more information as to under and over train
ing, such as the benign indication for the "1.0" token on some of the malicious
requests and the continued malicious indication for the "1.1" token. Unfor
tunately the static nature of a written presentation, prevents of from providing
more insight into the interactive nature of this process than possible here^

5. The Training Datâ ^
We previously sifted thorough the November 2002 access log by hand, clas

sifying each of the 216292 unique access request for the purpose of intrusion
detection research.

It was decided to classify the accesses into two categories, suspect and in
trusive. The reason for using a suspect class is that since this is data from the
field, and we do not know the intentions of the entity submitting the request, it
is sometimes difficult to decide whether a request is the result of an intrusive
process, the result of a flaw in the software that submitted it, or a mistake by its
user. Also, some accesses are just plain peculiar (for want of a better word), and
even though they are probably benign, they serve no obvious purpose. On the
one hand the suspect class consists of accesses that can acceptably be brought
to the attention of the operator. But on the other hand, as they are not proper
indications of intrusions, we accept that they may not be reported as intrusive.

The classification of the attacks was described in detail in chapter 4. In
summary, table 5.1 details the number of different types of access requests in
the training data.

6. The Experiment
The choice was made to train the system on the November log with the

identified weaknesses mentioned above^^ and then to evaluate the resulting
intrusion detection systems on the logs for the following months. Examining
the logs for the months following November, i.e. December through February,
we note that they contain on the same order of number of unique requests in
themselves, but it turns out that many of these requests are similar to the ones
in the November file. However the number of accumulated previously unseen
requests for the following months fall off nicely: November 200000, December

^Bayesvis is available under the General Public License.
^^These attacks are described in more detail in Chapter 4 beginning on page 49They are summarised here
for completeness.
^ 4t is perhaps unreasonable to assume that every operator of such a tool should do their own security
evaluation to acquire training data, but of course nothing prevents training the system on malicious data
made available by an external expert, much like intrusion signatures for signature based intrusion detection
systems are typically subscribed to from an external provider.

The Experiment 81

Access meta-type
Formmail
Unicode
Proxy
Pathaccess
Cgi-bin
Buffer overrun
Miscellaneous
Total attack requests
Normal traffic
Suspect
Total requests

Unique requests
285
79

9
71

219
3
7

673
215504

115
216292

Table 5.1. Summary of the types of accesses in the training data

87000, January 66000 and February 40000. In addition, studying the requests
themselves, many of these only differ in a single component compared to their
November counterparts, and hence ought to be easily dispensed with. Thus the
number of unique requests that have to be processed decreases nicely as more
knowledge about our particular web server is accumulated. As we are only
interested in the type of attack, the system will only be tested on the reduced
logs where previously seen requests have been filtered out.̂ ^

6.1 Training
Since an interactive tool with feedback is tested, several possible strategies

for training present themselves. A strategy was chosen that is believed to be
biased toward detection, i.e it will result in as high a detection rate as possible
at the cost of more false positives. The strategy is to mark all the previously
identified malicious requests as malicious and then mark the false positives
as benign until there are no obvious ones left. We name this strategy: Train
until no false positives. The cut-off score for the URL is set at 0.5 (which is
conservative), i.e. a score above 0.5 for a benign access request is considered
a false positive. This strategy is in contrast with a strategy that would add
more examples of benign activity by actively searching for them and marking
them as benign, even though they may not have a score that would make them

^^The reduction itself was performed by judicious use of the sort, uniq, and comm commands.

82 Combining a Bayesian Classifier with Visualization

false positives in our eyes. For examples of other strategies and their merits in
training Bayesian spam classifiers see [Yer04].

Figure 5.4 shows a detail of a step in the early phases of the training, where all
the attacks and suspect accesses have been added and marked, but the operator
has yet to perform much in the way of correcting false alarms. As seen in the
picture, all the accesses are either yellow or red, with tokens such as GET being
highly indicative of a malicious access. It is not difficult to realize that this
would probably not hold for a sufficiently trained intrusion detection system,
as the majority of all requests are GET requests. Hence, the operator starts by
marking a few of the benign accesses (one is selected ready for marking in the
picture). When a few accesses have been marked the operator can re-score,
re-sort and repeat the process, until the false positive rate is at an acceptable
level, according to the strategy described above. To give an indication, for the
November data set it turns out that only 325 accesses need be marked before
there are no false positives.^^ This should be contrasted with the total number
of malicious/suspect accesses marked (673 + 115 = 788) and the total number
of benign accesses (215504). Thus, only a small fraction of the benign accesses
need be marked as benign for the false positive rate to reach acceptable levels
for this data set.̂ "̂ Due to the nature of Bayesian classifiers, this does not
result in perfect training, three accesses have a score above 0.5 even though
they have been marked as benign as they are short and contains suspect tokens
only. It should be noted that it is fully expected that the false positive training
is somewhat fragile, i.e. the system will not give the benefit of the doubt to new
access requests, that even though they are benign are sufficiently dissimilar to
the ones marked, as the system does not have a great deal of benign data from
which to generalize any notion of benign accesses.

6.2 Evaluation
The evaluation consists of erasing the training data, saving the tokens with

their respective scores and loading the access requests for the next month. Then
the accesses are sorted according to URL score and the URLs with a score
surpassing our threshold 0.5 is judged for false positives, and the ones with a
lower score for false negatives.

^̂ We feel compelled to point out that the time taken to accomplish this task is of course trivial. If the user is
to have any hope of evaluating the output of any intrusion detection system, then he or she should not have
to spend more than 10 seconds per access request at the very most (probably much less) which means that
the training would take less than one hour.
"̂̂ Even though it is less likely that we could rely on external security knowledge for the training on benign

data than on malicious data, as the benign data is by its nature site specific, this is not as problematic as the site
operator must have an idea of what data the site provides. One also should not discount the possibility that
there is some potential for crossover between benign data for different sites due to e.g. directory structures,
templates etc. being similar for similar server software in use at different sites, and thus external benign data
might still make useful training data.

The Experiment 83

" File Help

Good Neutral Bad r Display scores G/N/B
J

Alpha

1.00Ö
1.000
I.OOD
1.ÜÜ0
1,000

1.00Ö
l.üOÖ
1.000
llfOO
1.000
1.000
I.OOD
1.000
1.000

0.5
0.5
0.5
0.5
0.5 fsm
0.5
0.5
0.5
0.5
0.5
0.5

Get
GET
GET
OET
GET
GET

GET
GET
0£T
GET
GET
GET
GET
GET
GET

GET
GET

IGET

I

/%2ülyciiari KTTp/H
/% 20 martin W/1"
.•••% 20 martin w/|
.•••-%20nordiand/ohaskell 1
/%20-qiao/200201.htm mWr
/%20~qiao/20021 ZXAm HTTR.'lJ
/%20-qiao f " ™ "
/%20rjmh/Arrows |
/%20rjmh/AiTows/l
/%20rjmh/I
/T228}hallgren/Thesis/|

/.%5ci^! i-frTP.'i.ü
.;%:tcbrHTTP.Kü
/"%3cT%3c%.]cT%.3c.' HTTP. 1.1
,'-%.3cT%3i:%3cT%3c/ ^tTTP/l .1
. ^ 5 9 HTTP/1.0

/%7Eaarne/BNFl
/%7Eaarne/8NF/l
/%7Eaarne/BNF/user.htm! |
/%7Eaarne/|Hfrpubiications.html"|

7Eaarne/GF/H^'javaGUImanual/javaGUImanuatFiles/arcliitecture.JPG RTTPa.'
'javaGUImanual/javaGUJmanualFiles/GUIcomponentsJPG HTTR.1J;
'javaGUImanual/javaGUImanualFiles/ianguagesI JPG I
'javaGUImanual/javaGUImanualFiles/ianguages2.JPG [
lavaGUimanual/javaGUImanualFiles/new.JPG ffiQi'l'
'javaGUImanual/javaGUlmanualFlles/newTopicl.JPG I
'javaGUImanual/javaGUImanualFiles/newTopicZ.JPG |

/%7Eaarne/GF.
/%7Eaarne/GF-
/%7Eaarne/GF.
/%7Eaarne/GF.
/%7Eaarne/GF.
/%7Eaarne/GF- G B M B

Skip I Find | |GET/%7Eaarne

Figure 5.4. False positives during the training phase

Indeed as suspected, latter results (see Figure 5.5) show some false alarms.
Here the visualization of the internal state of the intrusion detection system
displays its strengths. We see that similar "~andrei" URLs have clearly been
marked as benign some time earlier, as much of them are green, but a few
instances of the tokens (in this case input to a cgi-script that translates phrases
between English and Russian) must have been part of malicious accesses earlier,
since they have a perfect score of 1.0, being thought to be highly indicative of
malicious accesses. In this case, the majority of the URL consists of benign
tokens, and the relatively low score (most proper alarms have a perfect score of
1.0) makes it clear that these are in fact false alarms. As it happens, marking
just a handful of these accesses as benign (containing the tokens: root, not and a
few others) suffices to bring the score of these requests well below the threshold.
This process is simplified by the instantaneous update of the display. As the

http://HTTP.K�

84 Combining a Bayesian Classifier with Visualization

first URL is marked (bringing down the score of the not token), all other URLs
that contain that token are immediately updated, with their corresponding total
score. The operator then chooses the next URL that has not been affected and
mark that one, receiving instantaneous feedback on how that affects the rest
of the false alarms. This is a level of interactivity that (at the time of writing)
we have not seen in any other intrusion detection system tool, though it is
unfortunately difficult to do justice to in this presentation.

mmm

(~ Display scores G/̂ 4/B Alpha Score F Reverse sort

13 5 a?35 POST /JSUiiT.latt pi HTTPn 0
to 5 f} ?3^ GET f'i\mh/^JiiiHx%^y^i^'ta:p^'riti^^vii^^fiei^ H
k) 5 0.655 (3ET /'~3ncli^L'dicBonarv/lnd«x.C9!^Eiigii?H=Lfo.^*LJnfieistind&£nco<Ä«|-lii HTTP/1.1
B 5 0.665 GET /'-.enäf9l'dicÖonary/lnde«.cgf7Engiish-watch*ffiiaencod[n9=Koi8 HTTP/1 1
[0 5 Ö565 GET /'-»ndffl'dietiflnary/lnoeNcgl'^Engilth-phase^aiaEncoding-1(^8 MTTP/I ,I
[0.5 0.665 GET /'-jtidr*iL'ük,tiünafy:lnüeKcgt'?Engffst)-ping-winq»HiaEncoding-to(8 HTTP/1.1
k).5 0.6BS GET /-aiidfai'ciH:öonary/index.cgi?En8itsh=di(i*ap&£ncotlnß=l;öd HTTP/I i
K 5 0 665 GET ('-%n(ir*'l'r)!Chönaiy/1nöeNC8i''Eng!Ufl-art*flrwaraaiC(WJing-};ijlB HTTP/1.1
B.5 0.665 GET /*3;ndrU'̂ ük;üonafy/ln£toKcg!?En^Uh-CfOwcllnq*MI&Encoöfog-lcot8 HTTP/1.1
lo.5 0.66S GET /••5ndf8t'̂ dküooap/^ind^>Lcgi?Erifflgh-max*g|agncoding=|coi8 HTTP/I i
lo.5 D,665 GET /-6ndreL'dhrbö(iaiy.'1n<t*/'.C9i?En^l(h-equtty*lp||'CapttaiaeRtoüing-hoi?| HTTP/1.1
lo.5 0 665 GET /'-3JidttiKütcl)Qnary/lrnJexcgi'?engll*H-TaKejB*aEnco(Bn9-Ko!8 HTTP/l ,l
b.S 0.665 GET /~jiirtr%t/dicüonarv/1nd9x.cni7EngH?h-falUMa&M;<M*fng-koJB HTTP/1.1
».5 0.665 GET /-ancif8l'-diction8iy/irid^/^.cyi^EniilUh-|HHW(*£-Encot8!iQ-l«»j8 HTTP/1,l
lo 5 0 665 GET /•-andrei'̂ dtctionaryvlnöcx cgi'i'SngiUft-maj^miieJIBaencoing-l«»!« HTTP/I i
lo.5 0.86S GET /-anrir%L''UKtiQnaiyylnü9>tcgl'Erigli$U-peacejB&EmiöU»)8-(cot3 HTTP/M
lo.5 0.865 GET /••8ndf9l'(llctloni«y.1n(i9r.C9i''Erigttsh-rtng*Hi&EncoÖing-tot8 HTTP/l.1
l05 0665 GET /-%ndfel''ciichönaryvinöe\c8i'?EriaHtti-|Bfi|tmist&enc&dlng-*U)lfl HTTP/I i
10.5 0.665 GET ̂ '-andrfet^dk.tionary/lniisx.cgl'^EngiWi-MS'gatJrdSEntödkiö-koia HTTP/l .1
10.5 0.6BS GET ('-ün(l(9i/̂ d!':ti*)nary/in<|q>'vCgi'?En9H3h=MpcanalÄEncoding=Koi8 HTTP/I .1
|o 5 0 865 GET /•-ftndfsl'rifchena^>ln«ö.\cgPEn^Uh=^jpi&Encoding=MS HTTP/I i
B 5 0.665 GET /•-3jidrcl'drc(tortafy/1nöe>Lcgt'?Engil*h=^ti&Encoölng-koiB HTTP/i .1
» 5 0.665 GET /-and'ei/dictiDnary/lndsx.cgi''English-v/orK^MÄencoding=Koia hTTTP/l I
BS 0.665 GET/'-&nü«l/dto(iönwy'1nd*.--^cgi^EntfiUh-skim*^&enct«Jittq»iwl$ HTTP/I . i
10 5 0 665 GET /'-andreL''dtcltonafy/1n£JcKcgl''Engihh"^*ri(jht*nov/aEncodtng=1(018 HTTP/1,1
ki.5 0.665 GET /••-andf%i.''dfeUfjnafy'ind^x.cgî English. H*po 3 sibi eft Encoding-koi8 HTTP/I I
B 5 0.66S GET /-önürei''dicöofiajy.'inde.ic9(''English-jpHn*my. 11 feÄEncoding-tol6 HTTP/1 1
lo 5 0665 GET ;-!indrpL'd«cttonafy;lnöexcgl^Eng!)$h=^?.Encoding-KOie HHP/l 1
» 5 0.665 GET/-~3iidiftidiclionafy.lnd^cgt''Engii*h=M*choo4eaEncoding=iwi8 HTTP/I i
lo 5 0.68S GET /-enümt'dicttonaiy/lndaÄcgi^English-jH^agalnstaEncodtng-KoO HTTP/t .1
lo 5 0 6^5 GET /-»ntiwi/didionary/inö^xcgi^Engilth-leave*SiaEncodfeifl-l'flt9 HTTP/I i

SKip I Find ([GET htlp/Avwwnelllatis com.ua/c

Figure 5.5. Examples of false alarms in February log

A third example of the detection process is given in Figure 5.6, where the
generalization capabilities of the intrusion detection system are demonstrated.
Here we see several examples of Unicode attack Unicode type attacks that have
not been seen beforehand, which is illustrated by the number of yellow (i.e. not
previously seen) tokens. Despite this all the attacks are correctly classified as
malicious, since they contain the typical Unicode pay load or a variation thereof.
The intrusion detection system manages to generalize the learned detection
capability for this type of attack (this turns out to be true for the other classes
as well) and it is easy for the operator to convince herself that these alarms are
genuine, as they contain several highly significant suspicious tokens. To give an
indication of the generalization capability; in the January data alone Bay es vis
detected on the order of 200 generalized Unicode attacks.

The Experiment 85

We conjecture that it would be difficult to avoid detection for this type of
attack. There are only so many different commands to execute with the desired
effect, and only so many file system paths to get to them, so there are bound
to be a few significant tokens that will show up in all such attempts. We also
believe it would be difficult to drown the operator with chaff i.e. attacks that
looked similar on the surface but with extraneous tokens generated more or less
at random. Since one could opt not train the system on these attacks (marking
them neither as benign or malicious), their tokens would not pollute our token
frequency tables and hence they would receive a much lower score than the
true attacks as shown here. As the detector was not trained on much benign
traffic, trying to drown the malicious tokens by injecting (conjectured) benign
tokens would not help much either, since it would be difficult for the attacker to
guess exactly which few of the possible tokens that signify a benign message.
(Several recent spams try to fool the detector using this very approach). As
this is a side effect of our training strategy, other strategies may display other
characteristics.

6.3 Results

While a summary of the performance of the Bayesian detector itself fails to
capture the interactive aspects of the intrusion detection tool, table 5.2 contains
the approximate counts of the instances of true and false alarms and the sus
pect accesses that were classified as benign. As the system was progressively
retrained on the false alarms in the files in question the quality of the detection
increased. It was always relatively easy to identify false alarms, as these typ
ically had relatively many tokens of a benign or neutral nature, with only one
or two indicative of maliciousness, hence the number of false alarms as seen in
Table 5.2 does not say as much about the ease (or difficulty) with which these
could be identified. The only exception to this rule is were the access requests
consist of only one or two tokens in total. If these tokens happen to be part of
a malicious request, then marking and re-scoring would not tend to change the
status of the misclassified request as a whole, since there simply was not enough
data to work with. If the request consists of just one biased token, Bayesian clas
sification cannot do much. This is of course a problem for all such classifiers,
and one that becomes readily apparent from the visualization of the requests.
As conjectured, the detection rate was impressive, with no missed true attacks,
though it should be pointed out that the analysis performed was not as thorough
as that which lead to the November training data. The mis-classifications, i.e
false negatives, that did crop up where all in the suspect class, and in line with
the discussion in Section 5 they are not considered missed attacks. In summary

86 Combining a Bayesian Classifier with Visualization

Bayesian URL visualisation

File Help

Good Neutral ead p Display scores G/N/B Alpha

i ? i l + Ä + l i HTTP/1.1
HTTP/1.1

k | : | HTTP/1.1
HTTP/1.1
I f HTTP/1.1

HTTP/1.1
^ • + 1 1 HTTP/1.1

fc 5 t .000 HEAD /scnptU.%c1 %1 c!'Av!nnl.'*system3 '̂'Cfitcä.ö>?e '̂/c - dir%20c f HTTP/1.1
To 5 1.000 HEAD ..••scripts..;.%cO%2r.ywlnnl''sy$t8m32'''cmd.fi>«"'/c-di[%20c:'i's HTTP/1.1
0.5 1.000 HEAD ..•_vtLb!n.';.%cO%ef..%cO%af..%cO%af.%cO%af.".%cÖ%8f:.,'Winnt.'syst8i
0.5 t.ÖOQ HEAD /"iijadmpv.fd.''..%cO%^.f../..%cO%aL ..%=: 0%af.,'Winnl'sy$löR.!32''cm<*.
0.5 mm HEAD /madFfii:.v.̂ i:.%C55=: .-',;>55c,.%25^c. %?.^Z>:..%zr'-^- ' •"^^-

10.5 ^ H HEAD m-fiicAXZ'SU /.'^',>5^::c..'.%2fiJM;. .• wir.iii ^ y s t Q i M Ä B M ? j
lo.5 n S HEAD 4ns^£iC7;.%ca%af./. '•}:̂ ciyj!.af...''..%c.O''A^ /̂V/inni'
0.5 1 .OQÖ GET /'dogi;ett.cs.chatm8r$.s.s 386a HTTP/i .0
0 5 1.0QO GET /•dogb9rt.cs.chalm6r«.$8 8S03 HTTP/ I .0
0.5 1.000 HEAD ..'scripts/ \\./y/irint-'sy8tSffl32/cmö.eKe'^/^+clir%20cfl HTTP/1.1
0 5 1.000 GET /scripiv-.%c1 %9c.yWfriniy&ystem3Z'*cm>i.6.sö"/*c+äir
p 5 1.000 HEAD /scf 1 pt'..%cO%2f / .%< i}%2i. /. .%c(i%^. .•-Wirinl'syst6rfl52ycmd!
0.5 ^ ^ HEAD / vt! b i n / ^ ^ 5 c . >̂̂ C?ri=: .7^255.: .% .̂v;>::c„^ "
0.5 | H HEAD feigt&/../../../../Avjnrit>^^tom3^.cn)iS-a/:vv/i-KClir%2ÜC:i HTTP/1.1
p.5 • P I HEAD /scr ipt^M|f f^,y. .%cÜ%a. • ^ ^ ' ^ ^ ^̂ ^ • " " I J B M f B B H B I I ' ' t ' ^'"'^ ' ' " " f HTTP/1.1
0.5 m i HEAD /Scripts/..%uQ025u005c..u0025u005cWINNT/j^^M?pfa.e>g^ 'c-m*f. HTTP/1.1
0.5 K o e GET h i a i : / / i M | ^ ^ B ^ M / ^ B M M ^ ? 8 Q HTTP/I .O
0.5 ^ P HEAD / S C r i p t l l l H n H H w I f l l H V ^ n Q k l l H I ^ HTTP/1.1
0.5 | n HEAD /sc r ip t / . ^1%9r / . .%c1%9f . . / . .%c1%9f . . /Wi i in t ^MMMBBr l HTTP/1.1

P ^ H HEAD /scripiî ..%co%2f.%co%2f..%cü%2f..%cG%2r./MnnMMiî HTTP/I .I

0̂ 5 I n HEAD /$cHptil/..%cO%af..%cO%af..%cO%af..%cO%af.!/SMBBWhiB HTTP/1.1
0 5 1.000 HEAD /$cnpW^Mi^!fW^\mMggtMKKU^^*^^^^^^^ HTTP/1 1
|rj 5 1.000 HEALi ./scripts.. ',._... 'Winnl' '^yJiMw^Hf^T*V HTTP/1.1

1.000 HEAD .''•scripts.'..%ci %i c..%ci %1 c..%c1 %1 c..%cl %i c.mmm'^mrnd^^iMM^ HTTP/I .1
10 .5 1.000 HEAD / s c r i p t / . . _ . . / W m n t ^ f l ^ ^ M H n ? J 4 H T T P / 1 . 1
0 5 1.000 HEAD A^:nptS^^^^i lSMw^l^nHHHV^'^nl^ 'äV-^t^^^'^^^^^^^ HTTP/1.1
p 5 1.QÖQ HEAD '-• i^" " M " ^-^^^. ^ - .< . .» - ^ H ^ n ' ' | | j j | | j r i p | B i HTTP/1.1
0 5 1.0Ö0 HEAD , r̂iiDts.'. %ci%9f../..%ci%9f../..%ci%9f.4Minnt/MBB?^^B?17äir%20c:i HTTP/I.1
|o 5 1MQ HEAD .scripts..'..%c 1 %9f . .A^^nn l 'BMBM^HÄ?/ ! *d i r%20c lHTTPn.1

L
Skip Find GET http:/AWAv.helllabs,com.ua/c

Figure 5.6. Generalized detection of Unicode attacks

we have processed access logs containing close to 5 million access requests^^
(divided onto more than 400000 unique types of accesses) in two to three hours
including the one hour to initially train the system (discounting the time taken to
find the malicious examples). This time does not differ to a substantial degree
from the time the user would have to spend on going through the output of a
traditional intrusion detection system with similar performance as our Bayesian
detector.

7. Conclusions
We have developed an intrusion detection tool based on Bayesian classifica

tion. The tool—Bayesvis—provides the user with interactive visual feedback
on the state of the learning process, and as such the user can both ascertain the

^^This is a realistically sized example, though it cannot measure up to the likes of e.g. Google.

Conclusions 87

Month
December
January
February

Unique req.
87000
66000
40000

True alarms
700
560
240

False alarms
20
40
10

False neg. suspect
15
20
10

Table 5.2. Summary of the results of the experiment (approximate values)

quality of the output (by viewing the process that give rise to the alarms) and
selectively train the system until it has reached a sufficient level of learning.

The tool was tested on our own corpora consisting of four months worth of
access requests to a fairly large university department web server, using a Train
until no false positives strategy. The tool proved successful. The Bayesian
detector was somewhat successful in correctly classifying requests as intrusive
or benign, and the visualization made the limitations of the detector and the
training readily apparent to operator who could evaluate the quality of the output
and re-train the intrusion detection system interactively as necessary. One user
of the tool could well handle logs containing close to five million access requests
in the same amount of time it would take the operator to process the output of
a traditional intrusion detection system, with the added benefit of being able to
easily and interactively tune the intrusion detection system.

Furthermore, the training itself proved to not be unreasonably time consum
ing if one discounts the time taken to identify malicious examples to train the
system on, a task that can be carried out by external experts and amortized
over several installations as is the case with signature based intrusion detection
systems today.

Chapter 6

VISUALIZING THE INNER WORKINGS OF A
SELF LEARNING CLASSIFIER:
IMPROVING THE USABILITY OF
INTRUSION DETECTION SYSTEMS

1. Introduction

Current intrusion detection systems are difficult to use. The more advanced
systems apply machine learning principles to help the user avoid manual labor
e.g. in the form of having to write intrusion signatures. However, the more
advanced such systems become, the more opaque they become. By opaque we
mean the difficulty with which the user can discern what the system is doing.
With such self learning systems it becomes very difficult for the user to correctly
judge the quality of the output of the system, e.g. by correctly identifying false
alarms [WH99]. As false alarms can be the constraining factor for intrusion
detection (see Chapter 3) this is an important problem.

In the preceding chapter we described a visualization method for the state
of a self learning intrusion detection algorithm, to lend the user greater insight
into what the system was learning. This aim includes, for example, helping
the user detect instances of over training and under training, and enabling the
user judging the veracity of the output of the system. However, the algorithm
visualized then had several shortcomings: it was a relatively simple algorithm
that does not take the order or context of tokens into account. For example, the
classifier cannot learn that the tokens "A" and "B" in isolation are indicative
of a good context, but that the tokens 'AB' in conjunction are indicative of a
bad context. To address these shortcomings and to see whether visualization
methods could be successfully applied to a more complex classifier, with a
more complex state to visualize, we describe an IDS prototype based on a more
complex and capable classification algorithm.

The detector was applied to two corpora of data: our own, consisting of web
server access requests, and a subset of a data set with system call traces. We
also compared the detector to the less advanced one described in the previous

90 Visualizing the Inner Workings of a Self Learning Classifier

chapter. The detector performed well enough for the purpose of demonstrating
the visualization capabilities and these helped the user correctly differentiate
between false and true alarms.

2. Markovian Matching with Chi Square Testing
We have modeled the detector after popular and successful spam detec

tors [MW04, Yer04] since these have a number of desirable traits:

• They are self learning and need only be presented examples of desirable and
undesirable behavior.

• They build a model of both desired and undesired behavior instead of build
ing models of only one or the other and thus have a potential advantage
when it comes to detection accuracy.

• They can detect behavior in streams of data that may only exhibit some local
structure, a very open ended detection situation.

• Spam classification and intrusion detection share similarities and these de
tectors have performed very well in the spam classification scenario.

Training and classification begins as follows: first the sequence is divided
into records and the records into tokens. Then a sliding window of length six is
moved over the tokens, one token at a time. For each sliding window position, a
set of features is formed. This feature set is the set of all subsequences obtainable
by replacing some but not all tokens by the distinguished blank token ''(skip)".

An example will make this clearer: Consider the record 'The quick brown
fox jumps over the lazy dog" with the individual words as tokens. First the
window is slid across the input, the first window being: "The quick brown
fox jumps over." Then the feature set is formed: "(skip) (skip) (skip) (skip)
(skip) over", "The (skip) brown (skip) (skip) over" etc. such that all possible
combinations are covered.

The feature set is isomorphic to the powerset of the six tokens (assuming that
they are distinct), minus the empty set. Thus for a window of size six, there are
2^ — 1 = 63 features per window.

A weight {W) is then assigned to each feature according to the formula:
W - 2(^-1) where n is the number of non-(skip)tokens in the feature. The
weights are superincreasing, so that the weight assigned to a long feature (i.e.
one that contain many tokens and less empty positions) outweighs all of its
subfeatures combined. This way we approximate (piecewise) a Markov model
instead of actually attempting to generate a proper unified Markov model.

Training of the classifier consists of running examples of good and bad
records through the above process and counting the number of times the re
sulting features occur in a good and bad context respectively.

Visualizing the Detector 91

Classification i.e. assigning a score to each record is similar but here we begin
by using the resulting frequencies from the previous step to calculate the local
probability (Pi) of the feature being indicative of a bad context. The probability
is calculated by the following formula: Pi — 0.5 -f- W{ni) — n^)/2(n5 + rig)
where n^ is the number of times the feature occurs in a bad context, rig is the
number of times the feature occurs in a good context and W is the weight as
described above. The formula for P/ is purposely biased towards 0.5 for low
frequency counts, such that features that do not occur often are not considered
as indicative of context as features that have higher frequency counts. Thus,
somewhat simplified. Pi indicates the badness of a feature on a sliding scale
from 0.0-1.0. With 1 — Pi indicating the goodness of same feature. Of course,
0.5 means that we either found equal evidence for the feature indicating a good
or bad context, or no evidence at all. So far the detector is heavily influenced
by Yerazunis's Markovian matching [Yer04].

Given the local probabilities of the features Pi they have to be combined into
an overall score for the entire record {Ps)- We have chosen here to perform a chi
square test as done in the SpamBayes project [MW04]. The local probabilities
of all features are tested against the hypothesis that the message is good and bad
respectively and these probabilities Pg and P5 are combined as: Pg = {Pg —
P5 + l) /2. The detector proper returns Pg, Pg and P5 for later visualization.

The choice of using a window length of six merits further discussion. Yer-
azunis original detector (CRM-114) has a window length of five, but no further
insight into why that choice was made is provided [Yer04]. In a sense a longer
window size would be better, as that enables the detector to detect order de
pendent features further apart. However, with superincreasing weights, these
longer features will also serve to make the relative weight of the shorter features
lower, which means that the detector might make a misclassification having
learned a long irrelevant sequence that drowns all shorter sequences. There is
also the issue of the runtime of the detector. As we calculate the feature set
of the window, the size of the set is exponential in the number of tokens, so a
longer window means much more data to learn or classify. To keep the runtime
reasonable a window length of six was chosen. Furthermore it has been demon
strated that the data from Warrender et. al. [WFP99] require a window length of
at least six to detect all intrusions in that dataset, and as we will later illustrate,
the ability of the detector to classify based solely on the ordering of tokens with
examples from that data, it seemed appropriate. It should be noted though that
the particular window size of six seemed to be an artifact of one particular trace
of the Warrender experiment, and not based on any deeper underlying feature
of the nature of the intrusive or normal processes [TM02]. In any case this
issue merits further attention, especially considering that the attacker ought to
be considered to know the window length used.

92 Visualizing the Inner Workings of a Self Learning Classifier

3. Visualizing the Detector
A problem with the detector described in Section 2 as it stands is that it is

opaque to the user of the detector. When training the detector the user get little
or no feedback on what exactly the detector is learning and how to improve
on the situation. When using the detector for scoring unknown data the user
does not get much insight into why the detector classified the way it did. This
makes it difficult to discern when the detector is operating correctly and when
it is not, i.e. identifying false alarms and missed detections. Our hypothesis
is that visualization of the state of the detector with interactive feedback when
training will lend the user insight into how the detector is operating and thus
mitigate these problems.

The straightforward approach we have described in the previous chapter, the
bayesvis tool, is to display the token stream one record line, and color code the
tokens in some way to signal their significance to the user. A problem here is
that the detector proper divides the input stream up first into windows and then
into features, and this is clearly too much data to display on one line. Applying
the visualization idea of Overview and detail [CMS99, pp. 285-305]—where
one part of the display gives an overview of the data and another part more detail
about the region of interest—seems appropriate. The visualization problem is
one of devising a workable overview display, i.e one that summarizes the detail
data in a consistent manner such that the user can discern which records are
worth a closer look and which are uninteresting.

Figure 6.1 is a Screenshot^ ̂ of the prototype visualization tool Chilvis. The
data displayed are HTTP access request strings that will be discussed in greater
detail in Section 4. From a visualization standpoint it is divided into three
panels showing progressively greater detail the further towards the bottom of
the screen the user looks. The bottom most panel displays the scoring features
of the currently selected window. The middle panel displays all windows of
the currently selected record and the top panel displays the records.

Starting at the bottom of Figure 6.1, we describe the components of the
interface in turn:

Feature Panel Tht feature panel displays the relevant features in two columns
(made up of one score column and six token columns each) with the left
column sorted on Pi in ascending order (the column marked score in the

^ Where the lower part of the display does not contain any data the figures have been cropped.
^Unfortunately the human eye is much better at discerning between different colors than levels of gray,
so a gray scale mapping for the purpose of this presentation is less effective at conveying the na
ture of our visualization. It is suggested that the reader consults the original figures, aviable from
"www.cs.chalmers.se/~daveA/isBook", or the on-line, color version

http://www.cs.chalmers.se/~daveA/isBook

Visualizing the Detector 93

ji^rjigJir
File Hetp

• Display scores H! '̂p^^ [j Reverse sort

\mmm^^^
GE T / sc r i i J t » / . . :i •: i Ä'-Jt:,. •• Btrwt^ /8y»t/+l«32 'cwd »+^ ' '
GET / s c r i p t s / , .^'-i l>:'»f . . »Uvi t . 8UBt+HS2' c»c(,+:<a'
GE T / s c r i p t » / ' , . .'i:-: I^p. c . , »iivrt / aü»U»s*32 0*0 »«v»-
GET /scr lp ts / . .Ä«OA80 i4 f . . / » j8n f * /eu» l«ä*32 'Q»d . *> i i ' " „.
GET / s c r i p t s / . .XfOX30%80Äaf ../WS^-'^^XxviSl 'cnd.Titf^ 'a'
GET / s c r i p t s / . . S f e : S 0 % 8 0 X 8 0 S a f . . / « i i S n t sy t t t rOS ' e « i . e W ^ j
(ST / $ c r I p t s / . . X f c X a O X 8 0 X 3 0 X 8 0 X a f . . / » i n n t ' s w » t » i ^ / (S « i A
SET /X7Eaaro»/ctoo/p»bUcatl<yvs.htwl HTn>/1.0

Record panel

) /p»bi .

Mr,^a^'^»l^i^^^^ri^yj^'ww'^v'H.'•VJ^>MlA•J'.^wv^uTUlu^.^^^ >}i<i!iiiaw>
0 . 5 0 0 / 0 / 0 GET /Z7EaarYie/GF/doc/Ja\aCWIiw<ix>ai/JavaGUIiMruoiri I«/(ÄJIcoiVCX»rtts.JPG HTTP/1.1
0 . 5 0 0 / 0 / 0 GET /XTE^rrw/ f f /doc / jBvaGUI^aroa l /JevaGUlMTiua i r iLes / iÄ -^ twagös l .JPG H T I P / 1 . 1
0 . 5 0 0 / 0 / 0 GET / ; :7EÄ«rn<s/GF/cJoc/J«vaGUlMni« l / jav«GUIp«r iu«IF iLea/ l» '« i^e*2 .JPG HTTP/1 .1
0 . 5 0 0 / 0 / 0 GET /X7E*>rna /Gr /doc /Jaya6UlKr fc« i / j av *GUlMnt ja l l "aea /now.JPG HTTP/1,1
0 . 5 0 0 / 0 / 0 GET /5t7Ea«fv*9/GF/(fcc/JavaajIp»anL«ii/.>avaGUIporiusiriles,'nöwTopicl.JPG HTTP/1 .1
0 . 5 0 0 / 0 / 0 GET / ; f7EMroB/GF/dw:/JavaGUIpM»Xiai /Jay«GUlMnualFi lcs/r«.»TQplc2.JPG HTTP/1 .1
0 . 5 0 0 / 0 / 0 GET /; f7EMrfie/GF/doc/JavaGUIP»antJ«i /Jav«GUlionaalFi las/r«f lr>e2,JPG HTTP/1 .1
0 . 5 0 0 / 0 / 0 GET /5 f7E«arno /GF ' /doc /JswaGUI»aru« i /J«w»GUlMrwa l f i lM / re f ine3 .JR; HTTP/1 .1

£1

B
H I JD
[2_swp~

0

t

2

3

<x
6

7

e

GET

GET

XTEaarne

X7£««roe

XTEaarme

GF

GF

GF

GF

doc

doc

doc

dcjc

cbc

jowaGUIn«nual

J«^^flGUIMnUlll

javaCUInariLMl

J<»vaGtJI««xi4i

Jat^aGUlfurxi»!

JdvaGUlMnua lF i les

J « U B G I J I « « X V * I F t i e J

.la vaGUI ft^nua IF 1 I Q S

j a v«GUlF*«-iufl I F i Ittfi

j avaGUlnanualF i les

a r c h i t e c t u r e . J P G

a r c h i t e c t u r e , J P G

« r c h l t e c t u r e . J P G

a r c h i t e c t u r e .JPG

HTTP

HTTP

HTTP

1.1

1 . 1

Window panel

1

2

3

JsvaGUIiunua IF l i e s

...

...

arch I t e c t u r e . JPG

--
- —

HTTP

HTTP

1 .1

...
1.1

Score

0 .625

doc

...
javsGUInanual

...
Ja vaGU I w T i u a l F i l e s

... Feature

a r c h i t e c t u r e . J P G

panel

HTTP

HTTP

1 .1

1 . 1

Figure 6.1. The Chi2vis tool after training one bad and one good (Cropped)

panel) and the right column sorted in descending order.^ Thus the left
column displays the feature most indicative of a good record at the top and
the right column displays the feature most indicative of a bad record at the
top. The features themselves are displayed one to a line on a heatmapped
background [TufOl], i.e. the color is mapped on the color wheel from green
for Pi = 0 via yellow for Pi :== 0.5 to red for Pi = 1.0. The color chosen is
at the rim of the wheel, i.e. it is fully saturated and with a maximum value.
This way the greener the feature the more indicative of a good context,
and conversely the redder the more indicative of a bad context. The actual
numeric score of the feature is also displayed to the left of the feature itself.
It should be noted that these features are the only features displayed that are
actually taken into account when the detector proper scores a record.

Window Panel The middle panel, the window panel, displays the windows
of the currently selected record in such a way as to give the user both the

^Note that only the right column is fully visible in the figure i.e. it has all six token columns and the score
column visible. Only the rightmost four token columns of the left column is visible.

94 Visualizing the Inner Workings of a Self Learning Classifier

opportunity to select a window"̂ for display in the feature panel and to give
an overview of the feature values for other windows not currently selected.
In order to do this we have chosen to use the chi square test as in the
detector, but here on a token by token basis. For each token in the window
each feature in the database is extracted and all features that have the same
token in the same position are selected. The local probability values of
these features are then put to the chi square test and the combined score of
the test determines the hue (i.e. on the green-red scale) of the heatmapped
background color. The hypothesis probabilities Pg and Pi^ are combined into
a single value (summed) and that value determines the saturation (i.e. how
close to the whitepoint; at greater saturation, further from the whitepoint,
the colors appear less "washed out") of the heatmapped background. In this
way the user can discern two parameters: how good/bad indicative the word
is and how certain the detector is of that classification, with a high degree of
certainty (i.e. P^ low and Pg high or vice versa) producing a saturated color
and a lower degree of certainty producing a more washed out appearance.^
If the word never occurs in any feature then the background color is set to
gray which serves as a marker that this token has not been seen before.

Record Panel Lastly the record panel at the top is visualized much the same
as the window panel, i.e. the relevant features are extracted and combined
as for the window panel but now each word can of course be part of mul
tiple windows as well. It should again be noted that it is only the feature
probabilities that are actually part of the scoring proper. The chi square tests
performed in the window and record display are designed to give the user a
consistent summary of the actual scoring/learning process.

The interaction with the training phase is via the three top most buttons
(or their keyboard shortcuts) whereby the user can mark a record (or range of
records) as being good or bad examples (or resetting them to neutral status in
case of error).

A few other fields in the record view deserve mention. The leftmost column is
a marker that displays the training status of the record (0.0 on green background
for good, 0.5 on yellow background for neutral or untrained and 1.0 on red
background for bad). Next is the total score of the entire record on a heatmapped
background (with certainty value taken into account) rounded to three decimal
places, then Pg and P^ for the record mapped onto the range 1-9 (i.e. one

"̂ In the window panel of the figure, detection window number three has been selected as is indicated by the
blue outline of the first element ("doc") ofthat window. The whole record is not marked more clearly as that
would obscure the heatmap. Unfortunately that is not the case for the record display as that is not possible
with the graphical user interface toolkit used.
^These parameters are not completely independent. A score of 0.5 could never occur with a really high
degree of confidence for example.

Visualizing the Detector 95

character each) on a heatmapped background (from yellow to green and yellow
to red respectively) and finally the record itself as previously mentioned.

To aid in both training and using Chi2vis as a detector the user has several
options regarding sorting the record view. The user can sort on good/neutral/bad
i.e. the training status of the records, on the records alphabetically, and also the
record according to the record score.Of course the user can also save/load etc
the session or by removing all the currently loaded records but keeping the
feature data, save the resulting detector and load new records to be scored
without having the display cluttered with old training data. The user can also
search in the data by was of tho find and skip buttons that find the search string
indicated or skip ahead to the next record that does not match the search string
(counting from the beginning) respectively. To facilitate search and skip the
feature was added that when the user clicks on a record the record is copied
from the beginning up to the character under the cursor to the search field. If the
user wishes to see individual token scores (as abstracted above) she can select
display scores which will included them in brackets after the tokens themselves.
This also displays the total score (and confidence values) in the status bar with
full precision in addition to the rounded values presented in the record display
itself.

It is of course difficult to do justice to the interactive qualities of a tool
such as this in a static presentation, but to give a feel for it a small example
is presented in the Screenshots in figures 6.1, 6.2 and 6.3. A few examples of
malicious and benign web access requests have been loaded into Chi2vis. The
issue of malicious and benign web access requests is discussed in more detail
in section 4. In the first Screenshot (Figure 6.1) the user has marked one access
request as bad and one access request as good. As we can see the training is
actually adequate for the attacks, Chi2vis correctly marks all the other examples
of attacks as malicious. (For added detection accuracy perhaps more examples
should be trained on in an operational setting). This is seen not to be the case for
the benign access requests though, the detector finds insufficient evidence to be
sure of the status of most of them. As we can see in the figure, this is due to the
detector inadvertently thinking that requests that end with the pattern "HTTP
1.1" are malicious (In typical use the irrelevant tokens learned are not of this
trivial nature, they have been chosen here for purpose of illustration). This is of
course not likely to be true, indeed looking at the training data this seems indeed
to be a fluke in that the one good example does not contain the "HTTP 1.1"
pattern though the other misclassified benign access requests do. In Figure 6.2
the user has thus selected and trained another benign access request and that has
served to make the detector correctly classify the other visible benign access
requests. However, in the same figure we spot the reverse situation where the
"HTTP 1.0" pattern has likewise been found to be indicative of a good context,
even though the overwhelming evidence of a bad context has sufficed to make

96 Visualizing the Inner Workings of a Self Learning Classifier

the correct classification in this instance. However, as the pattern in itself is
known to not materially affect the outcome of any attack the user selects the
offending access request to retrain the tool. Figure 6.3 displays the situation
after the update. In this figure we can see that the "HTTP 1.0" pattern (and
all permutations) in themselves have been reevaluated to have a 0.500 score,
i.e. neutral. In conjunction with the attack access request though (as we can
see in the lower right part of the figure) it is still indicative of a malicious
request, which is as it should, as the classifier has learned the essence of the
attack: the attempted invocation of a command interpreter and hopefully the
many variations thereof.

ife-jiMjgi
File Help

I Good I i Neutral [j Bad [jDispl&i/ scores Alpha I I Score | n Reverse sort

Hi-s'/ix^^nj. ::rr-LJ,e.Nc

0*000/9/0 GET
0;Ö00/9/0 GET
0.OÖ0/9/O GET
0»Oö(?/9/0 GET
Ö.OöO/9/O GET
0.000/3/0 GET
O.OtJO/3/0 GET
0,000/3/0 GET
0.000/3/0 GET
0.000/3/0 GET

/8Cripts/. ,?fclXaf. . / S i r r t . rsfatBs?2 cw
/ s c r i p t s / . ..tclXpc.. /l»imt. t;MÄter)3~
/ s c r i p t s / . „^eOr:ÖO:faF.,/Kirnt- c«»t««(32/i
/scripts/. .Xfo;^:iöox«f.. /fa!iinit/evt»««t̂
/scripts/. .xrexeofisoxeo^far. ./teÄ/|ii*MS32/bM{,«
/$cr ip ts / . .XrcXSOXGOXeOUeOfiiif.. / |iÄ/ttW*t«n32/B*al Ä
/X?E*8rr«/doo/p^4.i i.:at Lons .ht i«l HTTP/1.0
/X?E4»TT«/GF•/dtx:/j«vaö.^I)»4rMJ*i/>^>4aJr^w*JaiFiiBs/«rcllitectw^e,JPG V(VW/V7i
/X?E«nTo/(y/*x:/jav-*OJlMrx»l/Ja*'aGUItMr«jaif iie5/IU'Icoi=*>c^ HTTP/l.l
/?f?E«rT»/GF/cfac/jai».-aGUIiWfUwi/.)3vaGUI«ariiiaiFiles/l«-t5Lts¥esa,JPC; HTTP/1.1
/?f7EMrm/iy'/doc/,wvd;ur(«r»jal/javaGUIi«arruaifiies/l«'^un<?s£.JFi; HTTP/1 »1
/)fiTaarr»/Gf'/doc/javaGüriwMial/iavoaJI*anijalFiias/r«u.JP& HTTP/1.1
/?t7E«ame/GF'/cJoc/java6UI(»«oLwl/JavaaJl^9nuaiFiles/ncwToplci.JP& HTTP/1,1
/Sf7Eoarns/GF/doc/,»>;ACUJr»«ar*jal/Java<iUIsan.jaiFilös/newToplc2.JPG H n P / l . l
/St7E>*m»/n^/cJoc/j«if<r(;iJli«»'rt^l/lsvfl«'jUIw»n'ialFil*s/reftne2.JPG HlTp/ i . i
/X7E^rtv^/[5-/r^:o/j«^-.^KJIHarrtJ^*^'J^vaGUIwln«Jal^il•»/roflne3.JPG HITP/l . i

Skip I I Find I [GET/scripts/..%cl%9c."

0

1

2

3

4

5

7

8

GET

GET

s c r i p t s

s c r i p t s

s c r i p t s

. . X c I X 9 c . ,

. . X c U 9 c . .

. . X c U ^ : . ,

. . J T c n S c . ,

w i m t

u i r o t

Wir^ttt,

wir^it

^j;vrt

systoK32

SMSta»32

.JySte(feK?

^ x t e t i S :

vhi»iAvi22

vviOte(i32

cnd.exe

Ci«d,e>r«

.:.i«I,»<*

c«^.e>Ä

c ^ i . i w ^

c

c

c

d i r HTTP

d̂ d
ä i Ü H T T P

C A d . « d | | | | | | H H T T P

1.01

1.0

1

2

3

4

5

6

7

8

9

Score

0 ,375

0 .438

0 .479

0 ,563

0 ,563

0.5&3

0 .563

0 . 6 2 5

|0.62S

systep*32

"-
...

...
syst*pt32

- —

CHd.exe

-"
...

...

cPKi.exe

...

...
c id . t txe

c

...

...
—
...
c

...

...
c

...

d i r

...

...

...
d i r

"-
...
...
d i r

d i r

HTTP

HTTP

...
HTTP

...
--'
—
...
...
...

1.0

1 .0

1.0

...

...

...
...
...

Score

&,0£)0
0 . 7 5 0

0 . 7 5 0

0 . 7 5 0

0 , 7 9 0

0 .625

0.&2S

0 .625

0 .625

syster*32

v^axAmSk

S':tClO«32

iy i tef tTS

3ijste)i32

5^te i i3c l

*y$tB*32

syst«»32

...

c . d . e . .

& i d . « x a

CW£l,0-^<

CWl.BV«

...
end.«XU

c»d,Bxe

-—
cad .exe

c

•1

c

c

c

c

...
c

d i r

...
d i r

d i r

d i r

- —
...
d i r

—

HTTP

...
...
...
...
- —
...
...
...

1.0 1

...

...

...

...

...
__.
...
...
...

a

na
a

Figure 6.2. The Chi2vis tool after training one bad and two good

Note that the display of the summary data in the two topmost views (even
though this data is not actually part of the scoring) seem to work well. From the
bottom up they give a progressively less detailed picture of what the detector has
learned, providing a useful overview of the detailed lower level data, without
cluttering the display with irrelevant information.

The Experimental Data 97

i^)ljSAA^!d^j^-j^^j£rj^jl!^J6i^^ia
IWU'A::,

File Help

Good Neutral Bad • Display scores I G/N/B I I Alpha | []

10.5
10.5
10.5
10.5
iO.5
:0,5
0.0
0,0
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5

/O/
/o/
/o/
/o/
/o/
l/'O/j

0.000/9/0 (ST
0.000/9/0 GET
0*000/9/0 (£T
0.000/9/0 (£T
0.000/9/0 (^T
0,000/9/0 GET
0.000/9/0 (^T
0.000/9/0 GET
0,000/9/0 (^T
0.000/9/0 GET

rrp/i.i
• ^ : HTl?. i . l
kffir-c: HTTP.1.1

-"dir-r: HTTP 1.

. ; ^ l X a f . . / ^ H / ^ ^ ^ H / ^ ^ B ? / § .xc i^pc../••rflij^B/BnB?/|
/̂ ^c?i'̂ lt>ts/. .XeOXeOXaf.. / iMj/l! j^teii33/hwJ.exe^/ |
.s-.v,T-ipu/. .;iro;:3o;ieo>:af., /Bnt/syst8ft3;^/ci«d.^

.>cr%x̂ ^%J, .?if 8%eOX80;i80Xaf../wirmt. syst-eaSS- CM
/fciefcS^/. .;irc>:80;ieO>;30;ie0^aF,. /Minr>t/''siiist«ft32/bad.exe'^.
/XTEaarne/doc/publications.html HTTP/1.0
/X7Eaarne/GF/doc/javaGUIwanual/JavaGUIr«anualFiie£/architecture.JPG i-ilTP. 1.1
/S£7Eaarne/GF/doc/JavaGDImanual/javaGUIwanualFiies/GUIcomponents.JPG HTTP/1.1
/X7Eaarne/GF/doc/JavaGUIf-»anual/JavaGUIrtanualFiies/languages 1 .JPG HTTP/i. 1
//iTEaarne/GF/doc/JavaGU I manual/javöGUIhatuialF lies/lang uages2.JPG HTTP/i .1
/.'f/Eaame/GF/doc/javaGUIhai-tual/JavaGUIrtanijalFiies/neui.JPG HTTP/1,1
/X7Edarne/GF/doc/JavaGUlKan«.ial/javaGUIftarrtjalFiles/neuTopicl,JPG HTTP/i.i
/;;7Ea«rne/GF/doc/javaGUI(äat-(uai/JavaGUlRamialFiie5!/newTopic2.JP6 HTTP/1.1
/>:7Eaarne/GF/doc/javaJ;;üIwanual/JavaGUIi»atiuaiFiles/rerine2.JPG HTTP/1,1
/;.7Eaarre/GF/doc/jevaGUIiitai-tuai/JavaGUInanualFiles/refine3.JPG HTTF/i.l

Skip Find GET /scripts/..%c1 %9c..Avinnt/system32/cmd.exe?/c+dir HTTP/1.1

GET

0 W
1

2

3

4

5

7

8

s c r i p t s

«crapts
BKA-lW,}:

. .Xc lX9c. .

'rifo'ragr
...;ci>";kv..

I ^ ^ ^ S f c , ,

u innt

winnt.

u i r r i t

wirr i t

«ijrvit

systen32

S9SC«t>K^^

ĵ;..i*>tTA,p;32

jry^-td'iiiH^;?

i*^ist«?)3i

Ä y s t e & S ^

e n d . e x e

cw3i .e<e"

c«f,̂ . e v j

cü:.-i.e/e

Ci^'i.'ft^'S

Otcd.exe

c

c

c

c

c

d i r

d i r

d i r

d i r

HTTP

HTTP

HTTP

i.ol

or

1

2

3

4

5

6

7

8
9

10

11

12

13

14

15

Score

0.500

0.500

0.500

0.563

0.563

0.563

0.563

0.625

0.625

0.625

0.625

0.625

0.625

0.625

0.625

systettt32

— -

— -

— -
— -
systeR32

— -
—
— -
— -
— -
— -
—
— "

.. .

chd.exe

—

—
—
cmd.exe

- —
—

—
-~
cEftd.ex©

ciwl.exe

cad.exe

c

—
—
—
—
c

—
—
—
—
c

c

c

—
—

d i r

—
—
—
d i r

—
—
—
d i r

d i r

d i r

— -
—
d i r

HTTP

— -
HTTP

HTTP

— -
—

— -
— -
HTTP

— -
HTTP

" -
— -
HTTP

— -

1.0

1,0

-—
1.0

—
—
—"
—
1,0

—-
1.0

—
—-
1.0

—
—

Score

1,000

1.000

1,000

1.000

1.000

i.ooo
1.000

1,000

i.ooo
1.000

1.000

1.000

1.000

1.000

1,000

system32

st^tei«32

si;i*i;t.e*«3^

syjPte6332

s^!Stas32

system32

sy«t«ft32

syst,e!ffi32

sysbef>t32

j^,,intc!fi32

syjr.beti»;52

^;^5teft3^

sy»te5i55

Si;tstepi32

syst»fa32.

cmd.exe

ĉ btd .exe

c?id ,e\<&

chnJ.exe

csci.oxe

osd,»)c9

cfid.exe

OPidtöXft

C'ipd^^-A'&

cfid.ftxe

ci=t-i.e/e

cficf.e\e
_ _ „

- - • -

—

c

o

c

c

c

c

o

c

--
c

c

sy&tefr(32|— K

' — "̂̂ * - ^'^ '

d i r

d i r

c i i i ^
d i l

dm
" -
- -
- "
d i r

d i r

d i r

d i r

d i r
d i r

—

HTTP

HTTP

—
- —
HTTP

HTTP

--
HTTP

HTTP

--
HTTP

HTTP

HTTP

HTTP

" * " " * " ' •

1.0

1 , ^

* ^
- —
i.O

^*\
-
lA
i.C=

^^%
-

l,d
1.0

" *

Figure 6.3. The Chi2vis tool after training two bad and two good

http://HTTP.1.1

98 Visualizing the Inner Workings of a Self Learning Classifier

4. The Experimental Datâ
We have chosen to conduct two different experiments. The first more compre

hensive experiment is on our own web server access log data, and the second on
publicly available order dependent system call trace data described in [WFP99].

For the first experiment we used the same data as the preceding chapters
(Chapter 4and Chapter 5), based on a webserver access log .

Even though the choice was made to study webserver logs, the longer term
aim is that the general approach developed here should generalize to other
monitored systems. It should be noted that the tool is agnostic in this respect,
placing few limitations on the form of the input data.^

The log consists of a text file with each line representing an single HTTP
access request. The fields logged were originating system (or IP address if
reverse resolution proves impossible), the user id of the person making the
request as determined by HTTP authentication, the date and time the request
was completed, the request as sent by the client, the status code (i.e. result of the
request), and finally the number of bytes transmitted back to the client as a result
of the request. The request field is central. It consists of the request method
("GET", "HEAD", "CONNECT", etc), followed by ihtpath to the resource
the client is requesting, and the method of access ("HTTP 1.0", or "HTTP
1.1" typically). The path in turn can be divided into components separated by
certain reserved characters [FGM+99].

The log for the month of November contained circa 1.2 million records.
Cutting out the actual request fields and removing duplicates (i.e. identifying the
unique requests that were made) circa 220000 unique requests were identified.
It is these unique requests that will be studied.

We had previously gone thorough the November 2002 access log by hand,
classifying each of the 216292 unique access request for the purpose of intrusion
detection research.

The data that resulted was described in more detail in Chapter 4 and are only
summarized briefly in Table 6.1. The table details the number of different types
of access requests in the training data.

^The description of the data here, save for the description of the Warrender system call data at the end of the
section, is similar to the more detailed description in Chapter 4, beginning on page 49. They are summarized
here for completeness.
^That said, lower level, more machine oriented logs may not be the best application of this method. Even
when converted to human readable form they require detailed knowledge of e.g. protocol transitions etc. Of
course, fundamentally the logs have to make sense to someone somewhere, as any forensic work based on
them would otherwise be in vain. Another problem is that of message sequences where the sequence itself
is problematic, not one message in itself.

Experimental Results 99

Access meta-type
Formmail
Unicode
Proxy
Pathaccess
Cgi-bin
Buffer overrun
Miscellaneous
Total attack requests
Normal traffic
Suspect
Total requests

Unique requests
285
79

9
71

219
3
7

673
215504

115
216292

Table 6.1. Summary of the types of accesses in the training data

The system call data from Warrender et. al. [WFP99] consists of long runs of
system call names (without arguments) E.g. mmap:mprotect:stat:open:mmap:-
close:open:read etc. Figure 6.6 illustrates this further. The interesting aspect
of this data is that the number of tokens (different system calls) is quite small
and that they all occur in all traces. Hence it is solely the order of the system
calls that differentiate a good trace from a bad trace. Unfortunately this also
makes them less suitable for this type of detector as there is less data available
for the user to make sense of visually. Nevertheless we deemed it interesting to
see how the detector proper performs when subjected to such data as it is order
dependent only, and it was furthermore the only such data that was available.
A problem here is the lack of intrusive data with which to train the detector.
The original stide detector developed by Warrender et. al. [WFP99] used in the
experiments was a pure anomaly detector in that it only learned benign patterns
and flagged patterns sufficiently abnormal as an intrusion.

5. Experimental Results
We have conducted three experiments of the effectiveness of Chi2vis. The

first two with the data described in section 4 and the last is a comparison with
the Bayesvis detector described in Chapter 5applied to the same web access
requests as Chi2vis is here.

5.1 Web Access Requests
For the first experiment we partitioned the web access request data described

in section 4 into a set of training data and a set of test data. Ten percent of the

100 Visualizing the Inner Workings of a Self Learning Classifier

accesses (with a minimum of one access request) in all the classes of attacks
and the normal data were selected at random. The suspect access requests were
not included. The detector was then trained on all the resulting training attack
access requests (i.e. they were all loaded into Chi2vis and marked as bad). The
normal training data was added and enough of the normal data was marked as
good until no false positives were left. This was accomplished by repeatedly
re-sorting by score and mark the worst scoring requests as good. We call this
strategy: Train until no false positives. A request was considered a false
positive if it had a displayed score of 0.500 or higher. A total of 280 access
requests had to be trained as good until all false positives were gone.

It should be noted that for many of the attack types, one might suspect
from the outset that too few training examples were provided (i.e. only one
example), as we can see in Table 6.2.^ This is not as much of a draw back as
expected though, as this experiment is mainly about illustrating the viability of
visualization as a means of understanding what the detector is learning, and less
about illustrating to what extent such a detector could be made to perform well.
As we can see in table 6.2, the two classes where more than twenty examples
were presented performed reasonably, with one of the classes that contain fewer
examples (seven for the Unicode-class) does admirably. Viewing a sample of
the access requests themselves in Figure 6.4 it becomes apparent that this is
probably the class most suitable for intrusion detection training as it consists
of a well defined type of attack that is easy to differentiate from benign access
requests. Note that the system has correctly picked up on the "attack tail"
of the requests, i.e. the system interpreter that the access request ultimately
seeks to execute. While the command interpreter invocations in the data are
not completely identical in all instances, the learning of the features with less
tokens also serves to identify them. In Figure 6.4 we see the very head of the
path {.vtiMn) also playing a role in the detection.

As for the experiment described in Chapter 5, we conjecture that it would
be difficult to avoid detection for this type of attack since certain significant
tokens are inevitable. We also believe (as we argued previously) that it would
be difficult to drown the operator with chaff. For example, as the detector
was not trained on much benign traffic, trying to drown the malicious tokens
by injecting (conjectured) benign tokens would not help much either, since it
would be difficult for the attacker to guess exactly which of the possible tokens
that signify a benign message. As this is a side effect of our training strategy,
other strategies may display other characteristics. We concede though that this
area merits further attention.

^The various classes the attacks have been divided into are also probably more or less suitable as a classifi
cation for detector training.

Experimental Results 101

Access meta-type
Formmail
Unicode
Proxy
Pathaccess
Cgi-bin
Buffer ovenxin
Miscellaneous
Total
Normal

Training
28

7
1
7

21
1
1

66
21550

Testing
257
72

8
64

198
2
6

607
193954

False eg.
0
2
2

34
15
1
3

57
-

False neg. (%)
0
3

25
53

8
50
50

9
-

Table 6.2. False negatives (misses) in testing data

The features detected in this data were all within the window length chosen.
The attack tails for the Unicode attacks for example were all around length
five. The detector would still have been able to detect the attacks with a shorter
window as the tokens themselves do not occur in the normal data, but had they
occurred the detector with the current window length would still have been able
to detect them given the unique order of tokens in the execution of the command
interpreter.

The raison d'etre of Chi2vis though is in helping the operator identifying
false alarms (false positives). Fortunately for us there were a few false alarms
with which to demonstrate the capabilities of the visualization. Table 6.3 details
the false alarms. Looking at Figure 6.5 we see that the five false alarms that
begin with HEAD form a pattern. The detector has obviously seen evidence
that the pattern "HEAD (skip) (skip) HTTP 1.1" is modestly indicative of an
intrusion. And looking at the training data it is relatively simple to spot these
attack patterns. However, in this case it is clear that the detector has been over
trained on the attack pattern (or indeed under trained on the normal pattern) and
marking only one or two of these patterns as good in this context serves to bring
the pattern in question to a more normal score while still not compromising
the detection capability of the detector as can be seen by looking at the already
trained attacks Doing so reduces the number of false alarms from 30 to 4 in the
test data.

5.2 Warrender System Call Trace Data
The second part of the experiment uses a subset of the available traces from

Warrender et. al. mentioned earlier. The data chosen are the normal login traces

102 Visualizing the Inner Workings of a Self Learning Classifier

r ^
1
2
3
4
5
6
8

_ v t l _ b l n

„ v t i „ b l r i

_wt.i_bin

. . X 2 5 5 C . . X 2 5 5 C . , X 2 5 5 c . . X 2 5 5 C . . X 2 5 5 C . .

. .X2S5c. . . t255c. . ; :255c. .Z255c. . i 'SSSc. .

. .Z2S5c. . i -2rÄr . ..^r26?c. .>r2f.5c. .X25Gc. .

. .X2S5c. .X2S5c. .X25Sc. .,V2S5c. . ; f255c . .

u l m t

» i m t

»>,;iT!»:

»«jnnl.

»«ifi^t-

syste»32

öVi«tei%33

«tjiWHv*!:

v-(CtÄ»Se:

3'3it tt«??

a i^ i« i i 3S

ci»d.exe

!!lt»d,ff^«

Vithi .«XB

CRd.exo

• : K { ! , B . *

= d i r

c

D

dir*
'ih-

c

^335^1^1313^3

HTTP 1 .1

i

2

3

4

5
6
7
8

9

Score

0 . 5 2 1

0 .555

0 .563

Ö.5&3

0 .563

0.S2S

0 .62S

rt}.&25

_ v t i „ b i n

_wt i_b in

-"

_-.

. . Z255C . .X255C . .Ä255C, . >ff i55c,.X255C..

—
—
—
—
—
—
—
.._

t f lnnt

...
—
...
—
wlnnt

—
—
...

sustei i32

...

...
systen32

--

$y8te«i32

s t ^ t a n32

CHd.exe

...
—
CMd^exe

- —
CMd.exa

cwd.exB

c

c

"-

c

c

Score _ v t l _ b i n

ÜPP"'
0.7S0
0.750
o.?so
0.7S0
0.625
0.625
0.625

...
-"

. .?:255c. .X255c. .X25J

'—
-,-
_..

Figure 6.4. Generalising the Unicode training to detect new instances

Type
HEAD-pattem
Others
Total

False alarms
26
4

30

F.a. (%)
0.010
0.002
0.015

Table 6.3. False positives (false alarms) in testing data

and the "homegrown" attack traces from the UNM login andps data^^ with those
traces that only contain one system call removed. More data sets are available
but as the visualization part of Chi2vis is less useful on this data, and the time

°Available at the time of writing at "http://www.cs.unm.edu/~immsec/data/login-ps.html".

http://www.cs.unm.edu/~immsec/data/login-ps.html

Experimental Results 103

Good Neutral Bad • Display scores G/N/B Alpha

10.5 0.503/0/0 PCST / " i y d i a n / o r d e r . c g l HTTP/1,0
!0.5 0.501/0/0 GET /cgi -b in/make_staFFxgX HTTP/1.0

0.5 0.501/0/0 HEAD /X7Eahrendt/keyWs02/ HTTP/1.1
0.5 0.501/0/0 HEAD / "p rasad /scp .h tw l HTTP/1.1
0,5 0.501/0/0 HEAD /"r jmh/QuickCheck/ HTTP/1.1
,0.5 0.501/0/0 HEAD / ^ / E r j w h / t u t o r - i a l s . h t t t i HTTP/1.1
iO.5 0.500/0/0 GET / ' lDernerus/chalmers*se/ fs /cab/cs/ .u»ers/bernerus/pub/web/ indey.html HTTP/1,0
b .5 0.500/0/0 GET /products /Jsse/doc/^^ idoc/Javax/net /ss i /SSLSocketFactory .h tml HTTP/1,0
!0,5 0.500/0/0 GET / ' 'mart inw/ tykyrka/vers icH^2/_vt i_bin/shLt t l ,exe/Ki rche.htra/aäp HTTP/1,0
jO,5 0,500/0/0 GET h t t p : / /wuw.cs,chalfr(ers,se/Cs/Grundutb/Kurser/di imp/ext ra / index .html HTTP/1.0
0.5 0.500/0/0 GET /' lDernerus/dcedocs/dfs/en_US/htnl/aix_gwy/daagy002.htP) HTTP/1.0
0,5 0.500/0/0 GET / ' ^ o e n / L o g / l o g , c g i ? f i l e : / / / u s e r s / c s / k o e n / N ü u / s t a r t , h L w l HTTP/1.0
0.5 0,500/0/0 GET / j ;7Ehai lg ren/gopher : / /cs .cha imers ,se:79/0 /whal lg ren HTTP/1.1
0.5 0.500/0/0 GET /"'»artin«/esperanto/veb/nendo,egi'>m=grur8.d=veb/bib 1 .h tw l HTTP/1,0
i0,5 0,500/0/0 GET / ' ' skanshol /Java_di r /upp laga2/ losn/kap06/ex6-09. tx t HTTP/1.1
|0,5 0.500/0/0 HEAD /"andrei/BG/Tour/wwuboard/messages/iaS.htft l HTTP/1.1
i0,5 0.500/0/0 GET /• 'skanshol /Java_dir /upplaga2/ iosn/kap 12/0x12-5 , tx t HTTP/1 »0

Skip Find I |HEAD/~catarina/agda/HTTP/1 1

0

1

2
3

4

5

7

8

HEAD

HEAD

"catarina

"catarirta

agda

agda

HTTP

HTTP

1,1

1.1

1

2

3

4

5

Score

0.4%

0.509

0.511

0.522

HEAD

HEAD

—
—
—

"catarina

— -
—
—
—

agda

—
—
—
—

HTTP

—
HTTP

—
HTTP

1,1

— -
—
1.1

1,1

- —
—
—
—

Score

0.565

0,532

0,527

HEAD

HEAD

HEAD

HEAD

"catarina

- —
—
—

agda

— -
—
—

HTTP

HTTP

—
HTTP

1.1

1.1

1.1

—

- —
-—

Figure 6.5. False alarms: Example of the //EAD-pattem

taken to train and evaluate the detector on such long traces (several thousand
tokens each) are substantial, only one data set was chosen for evaluation.

The data was converted to horizontal form with one trace per line for inclusion
into Chi2vis. There were, unfortunately, only a total of 12 traces of normal data,
and 4 traces of intrusive data in the data set chosen. Access to more traces would
have been preferable. A complication with this data is that the intrusive traces
(naturally) contain long traces of benign system calls. As a consequence of
how the detector in Chi2vis operates we cannot hope for the intrusive traces
to be given a high score (close to 1.0) as there will be substantial evidence of
normal behavior in them. Thus we will have to consider a low score (close to

file:///users/cs/koen/N�u/start,hLwl
gopher://cs.chaimers,se:79/0/whallgren

104 Visualizing the Inner Workings of a Self Learning Classifier

0.0) as benign and a higher score (0.5) meaning that there is evidence of both
good and bad behavior, to signify an attack.

Using interactive visual feedback as a guide, training the detector on 4 good
traces and 2 bad traces (unfortunately a substantial part of the available intrusive
traces) yields a detector where 10 of the good traces are correctly classified and
2 of the good traces are not (i.e. false alarms). Likewise 3 of the bad traces
are correctly classified but 1 of them is not (i.e. missed detections). Note that
these figures include the training data. Thus while the detector does not operate
splendidly, given the lack of training data, there is some evidence that it can
differentiate between good and bad traces in the Warrender data. Figure 6.6
is a visually rather boring illustration of this. It has been cropped to illustrate
the relevant overall results. In the figure the good traces were prepended with
the character "?" and the bad with "@" for illustration (they are not part of the
training).

-^= '̂IB1ffiPlill1IHIBIIBI
File Help

neutral I I Bad J [J Display scorgs j G/M/B] | Alpha] ! Score] [j Raverse sort

fe.5 0*000/'9/0 ''»t«No:¥'f«t<Kt:tt»t:o|>^M:^^»^»p:cia$e:ci>en:r<^«^:hl^ftp:^^*p:l^»«?:closa:t¥>«n
0.5 0.000/9/0 ''i(«p:»pr>st«ct:t»;at:operi:KWip:ciote:opon:r«ac]:p«i»*p:*(«^:BMp:^
0.0 0.000/3/0 ''R^M^:^pTOt»ct:sU^t:ope^:HMK':cioie:ctpert:^>tKi:w^hp:^l«V^:l»l*«?:c^^se:of^
0,0 0,0O0/?/0 ''h^M*i:^f^ot«Kt:«t«l:o(>ert:HMp;cio*e:operK^•«acl:N»4p:»lH«flp:»»«»p:c^^so:üF-
lO.O 0.OO0/9/O ''i"tiM*>: «protect :$tÄ:cr'e«:»t»4»^:close :(>p«rKr*KJ:M»4p:»rt<Mr'':«i<wjp:c^^^
0.5 0,000/9/0 ''«(MP: if^rotact:etat:open: RMP :close:open:read: «»ap: «wap; «*»p:close:(^?en:r«KJ: ««ap: »»ap: »ti»ap:close: «protect
0.5 0,000/9/0 ''»»ap:(iprot«ct:stJit:open:(»twp:close:open:read:Bttv:«iwp:«»ap:cio$o:c^>en:rft*J:i«*wv:i»^
0.5 0,000/9/0 ''(iiwp:«¥>rotect:Stat:open:RMp:close:open:read:i»»^:»iwp:»iMp:close:c^wn:r«3d:p«ft^:p»Mp:«MP;close;p»^
0.5 0,0W/9/0 '^nwqa:»protect:stAt:open:KI»OP:close:open:read:nfM»p:pin^:n«>«p:close:open:r«ad:nix«^:Kitsp^
[H i 0.000/9/0 @nwq3;i^3roteci;stat,;open:K»ap:clot»:open:read:nM>p:iiukp:itMp:clc»e:c^»en:r«^:M*i«^:nMp:i>Mp:clo^
iO.O 0.00O/9/O ^««^:iipTot<}ct:8t-4t;«tsen:»«n':clc«a:Dpi!ti;road:«hBp:it»«p:«i«f>:ciose:<^«^
0.5 0.500/9/i ''»Mp:iq3rot«jt:at*t.:':pen:»wp:clc'S«:op*«i:read:«H»p:ii»p:»»«»p:clxM*:op*m:r««i:»iiap:»>^
|0,5 0,500/9/1 ''«iMW):)VTot«rt.:»t*t:ct-'ert:*»»8p:ck<w:oFHj«i:read:Bh»p:iiMp:hMp:ciose:op«^
Ü 0.500/9/1 9««p: iipTot<ct: »t*t:>;f«n:*»i»p;ülC'B«:op«i: read :wt«öp:it«<it):»ti«4p:c lose : o ^ ^
).5 0.500/9/| 9«»ie(J:ivTot*ct:st4t:c4?ert;«»iap:clc«e:op*fi:read:B«p;iim«p:pii»«p:cios«:opon:r*«i:pi»^
0.5 0.500/9/i @Miuip:(«protect:st4t:Ci^en:KMp:close:open:read:Nf»p:Ktwp:itw^9:close:open:r«ad;n)ftap;nKap:»11^

Find j cat! socvetcaii lime v/nte operrsigactionrea j

Figure 6.6. Results from training on syscall data (Cropped)

It should be noted that we do not suggest that Chi2vis would make a good
choice of detector for this type of data. As it has had the arguments to the
system calls removed there is not enough context for the operator to be able to
evaluate the classifier. Thus this kind of data is not a good match for a detector
with a visualization component. We evaluate Chi2vis on this data set as it is the
only data available to us where the difference between malicious and benign
behavior is solely in the order of the tokens.

5.3 Comparison with Bayesvis
As it would be rather pointless to develop a visualization of the more com

plex detector presented here if it faired worse on the same data set than our
previous attempt described in Chapter 5, we present a comparison of Bayesvis

Experimental Results 105

and Chi2vis in this section. The visualization portion of Bayesvis is based on
the heat mapping principles presented here, but the detector proper is based
on a naive Bayesian classifier, which is simpler than the detector applied here.
Most notably naive Bayesian classification does not take the order of the tokens
into account when classifying, instead treating every token in isolation. To
investigate the differences between these two detection principles we present
the results of subjecting Bayesvis to the data in section 5.1. As Bayesvis does
not take the order of the tokens into account it would be pointless to compare
its performance on the Warrender data in section 5.2.

We trained Bayesvis on the same data according to the same principles. In
doing so we had to mark 67 access requests as good in order to bring all the
benign access requests in the training data below a total score of 0.500. This
should be compared with the 280 access requests we had to mark benign until
Chi2vis was sufficiently trained. We conjecture that this is because Bayesvis
due to its less sophisticated detector is more eager to draw conclusions from
what might be less than sufficient data.

Table 6.4 details the false negatives (misses) of Bayesvis on the data in this
paper.

Access meta-
type
Formmail
Unicode
Proxy
Pathaccess
Cgi-bin
Buffer over
run
Miscellaneous
Total
Normal

Training

28
7
1
7

21
1

1
66

21550

Testing

257
72

8
64

198
2

6
607

193954

Chi2vis

0
2
2

34
15
1

3
57

-

False neg

0
0
5

51
17
2

5
80

-

False neg (%)

0
0

63
80

9
100

83
13

-

Table 6.4. False negatives (misses) in testing data for Bayesvis

As we can see it performs substantially worse overall than Chi2vis. One
data point deserves further mention though. The 51 misses in the pathaccess
category can be divided into 9 + 42 misses of which 42 are of the same category,
a short "HEAD" access request with the total score of the request being 0.490
(i.e. barely benign) owing to the "HEAD" token having a score of 0.465. Just
marking one of them as malicious marks all of the remaining 41 access requests

106 Visualizing the Inner Workings of a Self Learning Classifier

as bad (total score 0.587 with the "HEAD" token score of 0.563). However, as
this goes against the train until no false positives strategy on the original benign
data we have refrained from doing so. We would furthermore have to go back to
the benign training and see that this update did not have a detrimental effect on
the other categories (both in terms of false negatives and positives). Looking at
the individual access types, Bayesvis does better in only the Unicode category.
We hypothesize that it is because Bayesvis has an easier time generalizing
from the example access requests in this rather straight forward category, as it
interprets what evidence it has more liberally, while Chi2vis is hampered by not
having seen sufficient evidence to be able to classify them as malicious. If this
line of reasoning is correct, Bayesvis eagerness to classify requests as malicious
on what might be less than solid evidence ought to show up in a higher false
alarm rate for Bayesvis than for Chi2vis.

Table 6.5 and Figure 6.7 details the false negatives (false alarms) in the benign
testing data.

Type
"cgi-bin"~pattem
Others
Total

Chi2vis F.a.
"

30

Bayesvis F.a.
20
21
41

Bayesvis F.a. (%)
0.010
0.011
0.020

Table 6.5. False positives {false alarms) in testing data for Bayesvis

As we can see our hypothesis of a higher false alarm rate was corroborated.
Even if the false alarms were dominated by one pattern (the "cgi-bin" pattern
detailed in Figure 6.8) as was the case for the Chi2vis experiment (though
Chi2vis false alarms were dominated by a different pattern), the remaining false
alarms still outnumber Chi2vis by a factor of two. Retraining could rectify the
"cgi-bin" token problem but doing so is more problematic here than in the
case of the Chi2vis "HEAD" pattern discussed earlier. In that case we were
certain we were only affecting the short benign requests by retraining but here
we would affect all requests that contains the "cgi-bin" token benign as well
as malicious.

In summary, Bayesvis does at least slightly worse in almost all respects
compared to Chi2vis on the web access request data. One exception might
be the benign training where Bayesvis required substantially less examples of
benign behavior before a sufficient level of training was accomplished. We
conjecture that this is a consequence of the simpler detector requiring less
evidence before "jumping" to conclusions, as supported by the higher false
alarm rate.

Experimental Results 107

•.iMiyJMiWIMi
File Kelp

Neutral 1 Bad G Display scorss Score 151 Reverse sort

i I GET / " s u s / v s h / B B HTTP/1.1
I GEt /"rebecca/rebeccaelT"

GET /H15C/HG2 .Q/ftre/Wf HTTP/i,p
I GET /"rebecca/rct HTTP/ i .q

'csMke^staff.cgi/cs HTTP/1.1
'pwke_staff.cgi HTTP/1.1

|/Gsi«ake_staff.CKl/«/ HTTP/1.1
''nake.sLaff.cgi/MLh HTTP/1.1

' n a k e . s L a f f . c g i / c s HTTP/1.1
'csMke.staff .c«i HTTP/l.l

kney_P»ake_st«ff .CBl/nv HTTP/1.1
'cs»«ke_starf.cgl/cs HTTP/1,1

„_ :/Mi^tt„3L«rr.cgi/cs HTTP/l.l
GET HlAp://W*t.C».chalt»(ir8»4B/X7£Aarne/ee»u/links.ht«il HTTP/l.l
GET htU»://iK»w.c».ch»lwr».s»//;rEnordlaod/ohugs/ HTTP/l.l
GET /''dubh«shi/tda300/iectures/(Mit*.«.Ch»lhlirs.*©/-dubhashi HTTP/l.l
GET /T<hofer/C**/w«,c».cH(ili««r8.f8/''khofer HTTP/l.i
GET /~ctibhashi/tcfa300/l«-lnterraces/i*i»tf.ct.chaltwr».««/*'da)hashi HTTP/l.l
GET /"cMbhashi/t.da300/Iectuf-e-2/<»w.c«.chali»ttr».«B/"dJahashl HTTP/l.l
GET /•BäBB/no-.PMike.staff .cgi/nv HTTP/1.0
GET / ^ ^ H / x t . c g i / M t h HTTP/1.0
GET / • • • / H a k e . s t a r r . c g l KTTP/1.0
GET / ^ ^ ^ • W / s c l e c t . c g i HTTP/1.Ü

' c s n ^ e . s t a f f . c g l / c s HTTP/1.0
'xt.C8i/cs HTTP/l.O
^csm^e^staf f .eg i / c s / H T TP / 1 . 0
M i / e u e s t s . c s l / e n HITP/1.0
'i»ake_staff.cgi/cs HTTP/1.0

i_*t«ff.cgi/»tath HTTP/l.O
^/nake_stäff.cBi/c$ HTTP/l.O

GET /'•Jotng/http HTTP/l.l
GET /-andreass/ interests/http HTTP/l.i
GET /•1<hofer/C**/c**sUdes<5.ps HTTP/1,1
GET /-Tax>fer/C"/c**siide$_3.ps HTTP/l.i
GET /"khofer/C*-'/c**slides_2.ps HTTP/l.l
GET /c HTTP/l.l
GET /-Khofor/C"/c*+slides_l.ps HTTP/l.l
PROPFIHD /XTEbowe HTTP/l.l
GET /.boFh.ny/sBrtflces/dce-dFs/t.l/exterrwsl.hLnl HTTP/l.l
GET / .bofh.ny/services /dce-df$/ l . l HTTP/l.l
GET / .bofh.ny/sorvices/dce-dfs/ l . l /HTTP/1.1
GET /Stfiport/Howtos/Hin/iw»ge/lpr/MMi/lpr02-wlnrit4„en.jP8 HTTP/l.l
GET /'•haIIcren/wget.cci-?uhat*B*edification HTTP/l.l

TAte/jI«U^rUy.U!ÜJtiaj*t={V^^

i GET >

s
[lE3 ;B

Skip : GET /Support/Howios/Win/im3ge/maiE/set1ings_setvet_tMAP_genera) jpg HTTP/i i

Figure 6.7. All the false alarms of Bay es vis

We are not aware of any other attempts at visualizing the state of a Naive
Bayesian (or similar) classifier than that of Becker et. al. [BKSOl] which de
scribes a product in the SGI Mine Set data mining product by the name of Evi
dence Visualizer. Becker proposes to visualize the state of the Naive Bayesian
classifier in a two pane view where the prior probability of the classifier is vi
sualized as a pie chart on the right, and the possible posterior probabilities for
each attribute on the left as pie charts with heights, the height being proportional
to the number of instances having that attribute value. The second display can
also be in the form of a bar chart with similar (but not identical) information,
where, to quote from the article:

IThe] Naive Bayes algorithm may be visualized as a three-dimensional bar chart of
log probabilities [...] The height of each bar represents the evidence in favor of a class
given that a single attribute is set to a specific value." (Kohavi et. al. [KSD96]).

The display works well for models with a relatively modest number of attributes
(which are probably continuous). A classical data set that is used in the paper
to illustrate the concepts contains measurements of petal width and length, and

108 Visualizing the Inner Workings of a Self Learning Classifier

Good [j Neutral

0 . 5
0 . 5
0 . 5
0 . 5
0 . 5
0 . 5
0 . 5
0 . 5
0 . 5
0 . 5
0 . 5
Ö.5
0 . 5
0 . 5
p.5
0 . 5
^ . 5
p.B
0.5
iO.5
!0.5
^ . 5
0 . 5
0 . 5
0 . 5
l0.5
^ . 5
0 . 5
0 . 5
0 . 5
0 . 5
0 . 5
|0.5
[0.5
b.5
p.5
0 . 5
b.5
b.5
b.5
b.5
».5
b.5

\KZ

0.000 HEAD / j s n
0.000 f€AD / M i l

"11 Bad] G Display scores | G/N/8] F

BB/sawnlll5?rfcf*X22/etc/pass*«IZ22*spbn+X,t.21,t,l,i,l HTTPÄL

0,165 GET /cgl/env.ht«! HTTP l̂.O
0.247 POST /cffi/for»»iHili.c2i KTTP/t.l
0.268 GET /a^gggag/test-cgi/extra/pttth7i*qtiery HTTP/1.0
0.340 POST / ror i .« i l .cc i HTTP/1.1
0,378 HEAD /«aruttge/cgi/cglproc NT TP/1,1
0.378 HEflD /cgi / HTTP/1,1
0,417 POST /am
0.417 POST /^M
0.417 POST / H
0.490 HEftD /cgi-

BB/forMil.cgi HTTP/i.O
•/ForHi«»il,pl HTTP/i.O
H / for twi I ,p l HTTP/1.0
src HTTP/1.1

0.490 HEAD /photoads/ads.data.pl HTTP/1.1
0.490 HEftD /cgi- jrc/phf,c HTTP/1.1
0.490 HEAD /pfdispaly.cgi HTTP/1.1
0.490 HEAD /cgt-Bin/«rop Hi TP/1.1
0.490 HERD /user
0.517 POST J f l i i
0.672 GET / • •
0.672 GET /WM
0.672 GET /egt^
0.695 F̂3ST /» (M
0.635 POST / ^
0.695 POST / M
0«7<tä HEAD / H
OJTI POST / •
{ g f i i HEAD ^M

OHHEAD / • ^ H HEAD / •
^•HEAD / • ^m HEAD / •
m ĉAo / • ^ B tCAD / •
O H hCAD / H
IIĤ CAD / • ^ H hCAD / •
^ H hCAD / H
• • tCAD / •
^ B t€AD / •
^ H £̂A0 / H

JMUlsl^Hi
PBÖ! HEAC^^i
^ 6 3 hEfC /e*^

~^' " ~1 "'

'eg.cgl fC*Ct= insert %/=onjatnum=wt iOi-t,est7^J5AUacet^f var^spooiri
Ü/fori i iwi l .cgi HTTP/i.O
l /Mn-cei HTTP/1.0
i/«iki.pl'?UseModWiki HTTP/1.0
i / test-cgi HTTP/1,0
ffl/forMll .pi HTTP/1.1
B / f o r M l l . c g i HTTP/1.1
• / F o r n M l l . c g i HTTP/1.1
• / roTKMl l . cg l HTTP/1.0
• / f o r n M l l . c g i HTTP/1,1
•/UltraBoard.cgi HTTP/1.1
•/bizdbl-search.cgi HTTP/1.1
H/Mkechang«s/easysLeps/eosysteps,pi HTTP/l.l
• / M l l l l s t . p l HTTP/1.1
• / u n l g l . l HTTP/1.1
• /pfdisplay HTTP/1.1
•/view-source HTTP/1.1
• /user .dat HTTP/1.1
• / t o s t - c g l HTTP/1.1
•/all»«nage/adp HTTP/1.1
• / z s h HTTP/1.1
•/passuord HTTP/1.1
• /photQ.cfg.pl HTTP/1.1
• /bnbfor* HTTP/1.1
• ^ l ^ ^ i H T T P n ^ l ^

•A!^ load .p i HTTP/1.1
•/daySdatacopier.cgi HTTP/l.l

Alpha 1 1 Score | D Reverse sort

1 " 1
/etc/passwd HTTP/l.l

• i / l o g l n » / o t c / p « M « i HTTP/l.l

B
[3

HEAD /cgi-binAvais pi HTTP/l I

Figure 6.8. The "cgi-bin" pattern false alarms of Bayesvis

sepal width and length for three labeled species of Iris. Thus in this data set there
are only four different attributes. Other data sets in the paper have eight different
attributes. The models we visualize, on the other hand, routinely have many
more attributes (i.e. the number of all features seen in training). As such we only
visualize the user selected attributes for which we have values and summarize
the findings at a higher conglomerated level (i.e. we only visualize the selected
features of the selected window that the record contains, visualizing the ones
not present, possibly tens of thousands, would not make sense in our case). We
also visualize the data directly (i.e. the text of the tokens). A similarity with
the visualization presented in this chapter and the previous is that the user of
Evidence Visualizer is provided with feedback on how many instances the model
has been trained on, data that is available to the user with our visualization in the
form of the whiteness of the individual attributes (and as heatmapped scores for
the whole record). As the models the two approaches visualize are so different
and the applicability of the Evidence Visualizer to the model presented here is

Future Work 109

difficult to judge, it is difficult to compare the two (rather different) visualization
approaches further.

6. Conclusions
We have developed a Markovian detector with chi square testing. A method

for visualizing the learned features of the detector was devised. As this display
was too detailed to be useful in and of itself, a method to visually abstract the
features to give the user more overview (in two steps) of the data was developed.

The resulting prototype Chilvis was put to the test on two data sets. A
more extensive one comprising of one month worth of web server logs from
a fairly large web server and a smaller one with publicly available system call
trace data. The experiment demonstrated the ability of the detector to detect
novel intrusions (i.e. variants of previously seen attempts) and the visualization
proved helpful in letting the user differentiate between true and false alarms.
The interactive feedback also made it possible for the user to retrain the detector
until it performed as wanted.

7. Future Work
A first step is to develop or gain access to other corpora of log data that

contains realistic and known intrusive and benign behavior, and to apply our
tool to such data. An investigation of how visualization could be applied to
other detection techniques is also planned.

The question of attacks (evasion, injecting chaff etc.) against the approach
taken here also needs further study as many of the attacks developed against
spam classifiers cannot be directly translated to the scenario presented here.

Any human computer interaction research is incomplete without user studies.
These are easier said than done however. The process of classifying behavior
into malicious and benign using a tool such as ours is a highly skilled task
(where operator training would probably have a major influence on the results).
It is also a highly cognitive task, and hence difficult to observe objectively. If
such studies are to be of value they would almost certainly be costly, and the
state of research into how to measure and interpret the results is perhaps not as
developed as one might think.

Chapter 7

VISUALIZATION FOR INTRUSION
DETECTION—HOOKING THE WORM

1. Introduction
This chapter^ explores the possibilities of employing a trellis plot of parallel

coordinate visualizations to the log of a small personal web server. The intent
was to find patterns of malicious activity from so called worms, and to be able the
operator to distinguish between them and benign traffic. Several such patterns
were found, including two that were not the result of worms and one of which
was unknown at the time to the security community at large.

1.1 Worms
Worms (e.g. [Pfl97, pp. 179,192]) are self replicating programs that attack a

remote computer system (often by exploiting some weakness) to gain access.
They then transfer a copy of themselves to the subverted system and start running
there. Once they are established in the subverted system the cycle begins anew,
and the worm starts scanning for other systems to infect.

Worms may or may not carry some sort of payload (logic bomb or otherwise)
that perform an additional sinister task. The Code red worm [CEROla] for ex
ample, launched a denial-of-service attack against a fixed IP address (belonging
to the "whitehouse.gov" web site) on the 20-27 of each month.

Worms have spread far and wide in the last few years, with far reaching
consequences. Often they are combined with viruses i.e. the worm has viral
properties also, but not always. The names of the most successful worms have
percolated up to the common consciousness, with instances reported widely in

^ An expanded and revised version of [Axe03].

http://whitehouse.gov

112 Visualization for Intrusion Detection—Hooking the Worm

the press and other news media e.g. the outage of The New York Times servers
when they were attacked by the Nimda worm [USAOl].

Worms often exist in several variants, which are smaller or larger variations
on the same basic theme. The Nimda worm is reported in five different variants
in the wild [CEROlb]. Finding different variants of worms, if and when they
occur, is therefore interesting from a security perspective, since they may exploit
new vulnerabilities that may yet not have been addressed, and for research into
the spread of worms.

2. The Monitored System
We have chosen to take the access log file of a small personal web server,

that has been continuously available on the Internet for some months. This web
server serves a small number of web pages from the home of the first author, to
the circle of his immediate family and close friends.

This web server is perhaps not representative of the majority of web servers
on the Internet in that it requires authentication for all accesses. This would of
course make it relatively simple in some sense to sort the illegitimate access
attempts from the legitimate ones, but we have chosen not to take the result
codes of the operation into account in our visualization, and therefore we claim
that the study of such a system could be generalized to include systems which
do not require authentication.

A perhaps more significant problem is that the web server does not have much
in the way of legitimate traffic. It is small and personal, and is only accessed
by a dozen people or so. One could argue that this could make illegitimate
accesses stand out more, not having much in the way of legitimate traffic in
which to "hide". Even so, since we are looking for worms that often account
for the majority of the traffic on much larger web sites, we still think the study
of such a small system worth while, even though it remains to be seen if the
results from this study can be generalized to larger systems. It is interesting
to note in this context that the accesses patterns on this webserver is similar to
what would be seen on a honey pot webserver, i.e. a server set up for the sole
purpose of drawing attacks to it in order to study them further.

Even if the method employed here does not scale to much larger web servers
when employed directly, we believe it is feasible to combine it with other
methods that first reduce the logfile to manageable proportions. Such reduction
methods invariably suffer from the false alarm problems mentioned earlier, and
hence it is not unreasonable to imagine a situation which is similar to the one
here, i.e. that we have a relatively small dataset with a sizable proportion of
intrusive activity, mixed with benign access.

The web server runs thttpd, a small, secure and fast web server written and
maintained by Jef Poskanzer, see "http://www.acme.com" for more informa
tion. At the time of the experiment thttpd had an impressive security record

http://www.acme.com

The Monitored System 113

with no published security vulnerabilities. The log records from the web server
contain the following fields:

IP address This is the IP-address of the system the request originated from.
Thttpd does not have the ability of doing reverse DNS queries, and hence
does not have the option of reporting the hostname of the remote system in
the way that e.g. Apache can.

Remote username This is ostensibly the username of the (remote) user that
the request originated from. We know of no web browser (or other client)
that divulges this information.

Authenticated username The username the client provides authentication for.
Thttpd (and other web servers) provide for authentication in the form of
requesting a username-password pair from the originating web browser. If
the authentication is successful the authenticated username (i.e. on the web
server) is logged. If the authentication fails the attempted username is not
logged, instead this field is left blank.

Time The time and date the request was received.

Http request The request string exactly as it was received the client. This is
formed by the access method {GET, HEAD, etc), followed by the URL of
the resource the client requested.

Http status code The status code that was returned to the client. Unfortunately
the full list of codes is too long to reproduce here. The interested reader is
referred to the HTTP specification in RFC 2616. Noteworthy are the codes:
200 which denotes the successful delivery of the requested page, and 404
which signals the well known "page not found" error.

Number of bytes This is the number of bytes that was sent in response to the
request (if any). The HTTP response is not included in the count, only
the actual page that was sent. Hence this value is blank for all erroneous
requests.

Referring URL If this request resulted from the user clicking a link on another
web page, the client has the option of sending the URL of that web page
(the "referring" page) as part of the request. Not all web browsers do this
(at least not for all requests) so this information is not always available.

User agent The name of the client software, if divulged by same. Note that for
compatibility reasons many browsers let the user modify the value sent, to
be able to masquerade as using another browser than they actually do. This
is to thwart overzealous web designers who for misguided concerns about
compatibility only allow certain browsers to access their web site.

114 Visualization for Intrusion Detection—Hooking the Worm

An example of a few log entries can be found in Figure 7.1.

213.37.31.61 - - [25/Sep/2002.-17:01:56 +0200] "GET /scripts/. .7.7,350. ./

winnt/system32/cmd.exe?/c+dir HTTP/1.0" 404 - "" ""

172.16.0.3 - Stefan [25/Sep/2002:19:28:28 +0200] "HEAD /sit3-shine.7.gif

HTTP/1.1" 304 2936 "http://server/" "Mozilla/5.0 (Xll; U;

Linux 1686; en-US; rv:l.l) Gecko/20020827"

172.16.0.3 - - [25/Sep/2002:19:28:46 +0200] "GET /pub/ids-lie.pdf HTTP/1.1"

200 615566 "http://server/pub/index.html" "Mozilla/5.0 (Xll; U;

Linux 1686; en-US; rv:l.l) Gecko/20020827"

213.64.153.92 - - [25/Sep/2002:22:57:51 +0200] "GET /scripts/root.exe?/c+dir

HTTP/1.0" 404 - "" ""

Figure 7.7. Sample records from the webserver log file

Thus the log contains a maximum of nine degrees of freedom. In our data
set this is reduced to eight, since no web client divulged the remote login name
of the user, and hence this field is always empty. All the other fields have values
for at least a subset of the records.

The log contains some 15000 records, and begins in earnest on 25 Sept
2002. It ends on 1 Jan 2003, and thus covers some three months of activity.
As a comparison, the web server log for the computer science department at
Chalmers for the month of November 2002 contains on the order of 1.2 million
accesses, comprised of circa 200 000 unique requests.

3. Scientific VisuaUzation
The security log data has multiple dimensions with no a priori dependent

variables and is therefore multivariate in nature. Spence [SpeOl, pp. 45] lists
only a handful of methods for the visualization of multivariate data. Of these we
have chosen the tried and tested techniques of the parallel coordinate plot [Ins97]
combined with a trellis plot in one variable [SpeOl, pp. 168].

The main reasons for choosing parallel coordinate plots over the other meth
ods were:

• The visualization does not give preference to any dimension at the cost of
other dimensions. This is important if we don't have any indication about
which data may be more important from the point of view of making a
successful visualization of the data set. Other visualization methods give
some dimensions of the data a more prominent (visually striking) position
at the cost of others.

• Parallel coordinate plots can visualize data with more dimensions than the
other methods. It is not unreasonable to visualize data with ten or even
twenty dimensions. Most of the other available methods strain when faced
with four. As we shall see this turns out to be less important to us as we will

http://server/
http://server/pub/index.html

Scientific Visualization 115

reduce the data set to five dimensions. Since our original data set contains
eight degrees of freedom, and it would not be unreasonable to visualize them
all in an operational setting, the ability to visualize many dimensions is still
an important consideration in choosing the visualization method.

• The visualization methods lends itself to trellis plots, i.e. where we make a
plot of plots (see below), in one of the variables. This is an effective method
in seeing trends in higher dimensional data, when one variable has been
singled out, in our case to group the requests. Not all the other methods
lend themselves to trellis plots as well as the parallel coordinate plot, if at
all.

• The parallel coordinate plot is very generally applicable; it can handle both
continuous and categorical data (though admittedly some of the key benefits
are lost then) and it can be used to both see statistical correlations between
data points, and as a more general profile plot, where the appearance of the
graph itself (rather than the curve forms as in an ordinary x-y scatter plot)
can be used to identify features. We will use the parallel coordinate plot in
the latter capacity.

• The last, but by no means the least, of our considerations is that the parallel
coordinate plot is well researched and the theory around it somewhat more
mature than is true of many of the alternatives.

3.1 The Parallel Coordinate Plot
We have used the tool Spotfire to make the parallel coordinate plot .̂ A

parallel coordinate plot is prepared by taking each data point and projecting it
as a line joining the components of the vector onto a set of parallel coordinate
axes. This form of visualization does not only let the viewer learn about the de
pendencies between the variables, but also lets the viewer quickly see emerging
patterns, and compare different datasets for similarities and differences [Ins97].

Figure 7.2 illustrates the case where 68 different points in eight dimensional
space have been mapped onto (eight) parallel coordinate axes. In this case the
dataset was chosen by limiting the log file from our webserver to the first 68
data points. We choose the eight dimensions that had data. They are in order
in the figure:

Date The date and time the request was made. In this case the data has been
limited by selection, and hence the available dates only cover a small per
centage of the axis. Spotfire does not rescale the axis when the visible data is
limited in this way, to preclude the effect where abrupt scale changes makes

^"http://www.spotfire.com"

http://www.spotfire.com

116 Visualization for Intrusion Detection—Hooking the Worm

Figure 7.2. A simple parallel coordinate plot

Scientific Visualization 111

the user lose his orientation as different ranges of data are selected. If we
had rescaled manually, or made smaller datafile, then the available dates
would have covered the entire axis from 0% to 100%. This is of course true
for all the subsequent data as well.

Note the date slider, in the query devices sidebar, that has been manipulated
to select the narrow range of records that are displayed.

Remsys/Request/Url This variables are imported as strings, lexicographically
sorted, and plotted as categorical data.

Authuser The usemame of an authenticated user, or the minus sign if no au
thentication has been performed. Note the check boxes corresponding to
the two possible values in this dataset at the very top of the query devices
side bar.

Binned status The status (e.g. 404-notfound) that the request resulted in. This
data was imported as integers. However the result codes are not integral
per se—i.e. magnitude comparisons between the result codes 200 and 404
interpreted as the integers 200 and 404 respectively, makes little sense.
Instead the result codes have been rescaled by being sorted into bins chosen
so that each result code ended up in a bin of its own. This has transformed the
integral data into categorical data which is plotted with each bin equidistant
on the vertical axis. The order of the bins is also user selectable.

Bytes The number of bytes that were sent in response to the request. Imported
as integers, and in this case the data has a magnitude as opposed to the status
data. Spotfire has the ability to logscale such data (and many other possible
scalings can be applied as well) should the user so chose though we have
opted not to.

Useragent Typically the browser that made the request, if that information has
been divulged. Imported as a string and hence treated as lexicographically
sorted categorical data.

For the purpose of this paper we will not use the possibility of finding corre
lations between data points using the parallel coordinate plot directly. However,
just to hint at the possibilities; in Figure 7.2 we see a strong inverse correlation
between the result code {binned status) and the auth user field, indicating that
the lack of authentication leads to "access denied" types of error codes, and
vice versa. This is not surprising given that we have already stated that the
webserver was configured to use authentication for all accesses. However, we
used a similar plot to discover that the access controls had been misconfigured
at one point (after having upgraded the webserver) giving access to the world.

It should be noted that while Spotfire does not mark the axes with any label
indicating the range in absolute terms, hovering the mouse over any specific

118 Visualization for Intrusion Detection—Hooking the Worm

value displays the coordinate of the axis, as well as all coordinates for the closest
record. Data points can also be marked and the data for the corresponding
records displayed in the sidebar details-on-demand. Here we have marked one
record (indicated by the thicker lines surrounding it) and the corresponding
record is visible in the lower right comer of Figure 7.2.

Another sidebar (query devices) allows the user to dynamically adjust the
data that is displayed, e.g. a continuous variable can have a slider (or other user
selectable input element) that lets the user select the relevant parts of the data
set for display. This sidebar is in the upper right comer in the figure. In this
case it displays three examples of query devices: check boxes, a range slider
and an item slider.

As these are dynamic user interface properties, it is of course difficult to do
justice to their user benefits in a paper presentation.

3.2 The Trellis Plot

The trellis plot (or prosection matrix in the case of continuous data) is de
scribed in [SpeOl, pp. 168]. It was originally used as a way of extending two
dimensional scatter plots into three dimensions, without introducing a 3D view
and all the complications that follow. Instead a pair of the variables is singled
out and a plot of subplots is made, typically arranged in a triangular matrix,
where the axes represent the different possible choices for the pair of parame
ters, and the x-y position in the matrix contains a plot of the other parameters
for the x-y value of the singled out parameters. In the case of continuous data,
it is of course not possible to make a continuum of of subplots. Instead a dis
crete number of ranges of values of the pair of parameters is chosen and the
corresponding subplots made.

In our case, we will chose only one variable, not a pair. We will single out
the request string, which is already a categorical entity. Since we only make
one parameter choice, the x-y position of the subplot within the trellis plot will
not carry any further information—conceptually the subplots would be laid out
in a linear fashion one after another—but are laid out on the plane so as to
use screen real estate effectively. By doing the trellis plot this way we hope
to find similarities in access patterns corresponding to different requests, and
hence being able to visually cluster them corresponding to the entities (human
or worm) that lie behind the particular requests in that cluster. This is also how
we use the parallel coordinate plot as a profile plot. It is the profiles ("blobs"
if you will) that exhibit similarities between the different subplots and we will
use these similarities to group the requests into clusters.

Visual Analysis of the Log File 119

4. Visual Analysis of the Log File
The aim of this investigation is to find support for the hypotheses that the

web server was targeted by some of the more popular worms (that attacked web
servers) during the period in question. We would also like to be able to tell apart
the different types of worms, if any, and also to differentiate between the access
patterns made by worms, and those made by others, i.e. more or less ordinary
users. We will perform this by correlating different requests with each other
to see if they cluster into patterns of activity that can be distinguished from
one another. We wish to make distinctions both between benign and malicious
accesses, and also between the various malicious accesses themselves.

There is some justification for the belief that such differences will be present.
For example Feinstein et. al. [FSBK03] report differences in the distributions
of source IP addresses between automated denial-of-service type attacks and
benign traffic. These differences are significant and enables the attacked site
(or intervening router) to differentiate between these types of traffic based on
source IP address alone.

Since our web server requires authentication it would be natural to divide
access into allowed and denied as a first step, but as we we have mentioned
earlier; since most web servers are not configured this way, we will refrain from
using this data. Furthermore, since we do not see how this would allow us to
tell different kinds of worms apart, another approach is necessary.

Attack of web servers typically have to do with exploiting weaknesses in the
web server's handling of input data, either by having the server misinterpret it,
doing something the designers never intended, or by triggering a buffer overrun,
thereby allowing the attacker to take control at a lower level. Since the only real
source of input data is the request the web client (browser/worm) makes, it is
(as we mentioned earlier) natural to make the visualization pivot on the request.
We have already mentioned that one way of accomplishing this is to make a
trellis plot of the log data, with the request being the controlling variable.

In Figure 7.3^, a specific parallel coordinate plot has been made for each
of the unique request strings (59 in total), i.e. the request string has been held
constant, and all data pertaining to other requests have been filtered out in
each of the 59 plots. As a consequence the request string was removed from
the subplots themselves as it would not add any useful information. In fact it
would have detracted from the similarities of the plots since it would have been
different for each of the subplots.

^Here, as for other detailed figures, we refer the reader to the book's web page where full color figures are
available: "www.cs.chalmers.se/~daveA/isBook".

http://www.cs.chalmers.se/~daveA/isBook

120 Visualization for Intrusion Detection—Hooking the Worm

Figure 7.3. A trellis of parallel coordinate plots

Results of the Investigation 121

In order not to taint the results of the investigation with data that pertains
to the success or failure of authentication, we have reduced the dataset to the
following four variables:

Date The date the request was made.

Remsys The IP-address of the system that made the request.

Url The referring URL if any.

Useragent The user agent (browser) that made the request, if provided.

The variables Authuser, Status and Bytes had to be removed since they tainted
the experiment by leaking information (directly or indirectly) about the success
or failure of the authentication:

Authuser The usemame of the authenticated user, since this would immedi
ately leak information about the success or failure of authentication.

Status The result code that the request resulted in. There is a result code that
communicates "authentication failure" and hence that would also directly
leak information.

Bytes The number of bytes that was sent. In the case of authentication failure,
the webserver would not respond (in the same way as if the authentication
would have succeeded), and hence not send any reply as a result of the
request. This would set bytes sent to zero, and hence correlate rather strongly
with authentication failure (though not perfectly).

Removing data from the visualization actually strengthens the results of the
experiment in that we remove security relevant information, making the task
more difficult. In an operational setting we most likely would not perform this
reduction.

To illustrate the concept in greater detail; Figure 7.4 is an enlargement of the
plot marked "3" in Figure 7.3. The axes are labeled with the respective variable.

5. Results of the Investigation
Even a quick glance at Figure 7.3"̂ reveals four interesting patterns (marked

1-4 in the figure). Looking closer at the individual plots we can see that they
originate from a large number of systems, and dates. They are also comprised
of a lot of repetitive accesses (i.e. a large number of records). Other patterns
can also be identified, more about them will be said later. They look markedly
different even ignoring the fact that they are comprised of much fewer accesses.

"̂ Or at least at the full resolution color version ("www.cs.chalmers.se/~daveA/isBook")

http://www.cs.chalmers.se/~daveA/isBook

122 Visualization for Intrusion Detection—Hooking the Worm

Figure 7.4. A plot of the "Code-red" worm access pattern

Even without knowing the contents of the web site, it is difficult to believe that
there would be four sets of pages that would give rise to such access patterns.
Indeed, the four patterns are quite distinct when compared to the rest of the
subplots of the trellis plot. If we draw on knowledge about the contents of the
website the game is immediately up.

There are one or two additional suspicious looking candidates, but viewing
the request themselves gives that game away. It is not unreasonable to view the
requests to eliminate suspects; we envision this method as mainly useful for
the system administrator of the site, i.e. someone that is familiar with the site
and and manner in which it is used. Indeed someone who was not familiar with
the site could not make the sort of security policy decision on the spot that we
alluded to in the introduction to the paper.

The four suspicious request patterns may be indicative of worm activity and
merit further investigation. Dissecting the clusters with regards to the number
of different requests results in:

Pattern 1 Six different requests.

Pattern 2 Ten different requests.

Results of the Investigation 123

Pattern 3 One request.

Pattern 4 One request.

"GET /MSADC/root.exe?/c+dir HTTP/1.0"

"GET /_vti_bin/. .y.255c. ./. .7.255c. ./. .y,255c. ./winnt/system32/cmd.exe?/

c+dir HTTP/1.0"

"GET /c/winnt/system32/cmd.exe?/c+dir HTTP/1.0"

"GET /d/winnt/system32/cmd.exe?/c+dir HTTP/1.0"

"GET /scripts/root.exe?/c+dir HTTP/1.0"

"GET /scripts/. .y,255c. ./winnt/system32/cmd.exe?/c+dir HTTP/1.0"

Figure 7.5. The six different requests made by pattern 1 from Figure 7.3

Viewing the access requests themselves (we have refrained from a detailed
listing of all of them here to save space, but Figure 7.5 lists the six requests of
the first pattern) and searching computer security sources we find evidence of
two different instances of Nimda [CEROlb] in patterns one and two. These two
worms seems to have invaded the same types of systems, given the similarities
in the IP-address ranges they originate from. Nimda is interesting in that it
attacks web servers (Microsoft IIS) by either scanning for back doors left by
other successful worms (Code red), or by so called Unicode attacks, where the
URL is modified (certain characters escaped) to avoid subroutines in the web
server that clean the request of certain "dangerous" characters e.g. characters
that modify the search path to requested resource.

The third pattern consists of only one type of access. It was found equally
quickly in the literature, since it consists of one very long access request, de
signed to overflow a buffer in IIS [CEROla]. The Code red worm does not
probe for a wide variety of weaknesses in IIS, as Nimda does, relying solely on
the one buffer overflow to gain entrance.

Comparing these two worms is illustrative in that we see a marked difference
in the range of IP-addresses of infected systems. We presume that this is because
Nimda can infect not only web servers, but also web clients (Microsoft Internet
Explorer 5.0)—when the user visits a subverted web page, or be attached as an
email virus. Thus home users, who presumably does not run web servers on
their home computers frequently, are susceptible to infection by Nimda. Nimda
then goes on to spread through all available means, including scanning nearby
IP segments for vulnerable web servers and hence end up in our logs.

Code red, on the other hand, relies solely on web server infection, and hence
will infect other IP address ranges that have not been reserved by Internet service
providers who cater predominantly to the home users. Therefore we see such
a marked difference in the access pattern.

Pattern four is the piece de resistance of the investigation. At the time of
investigation, neither the literature nor any of the major security information

124 Visualization for Intrusion Detection—Hooking the Worm

sources on the Internet listed this particular access request in conjunction with
any known worm. They did list several similar access requests (as they are
part of larger class of IIS vulnerabilities), and indeed had we only looked at the
access requests themselves we might have missed that pattern four is different
from the Nimda patterns since the request strings themselves look strikingly
similar. The request in question is

"GET /scripts/. .yo255c7,255c. ./winnt/system32/cmd.exe?/c+dir HTTP/0.9"

Compare the similarity with the last request made in Figure 7.5. The total
number of accesses was small; only 71 access requests (about on the same
order as for Code red, and an order of magnitude less than Nimda). Another
odd characteristic was that they were not repeated from the same system twice
(with one or two exceptions). We concluded that we were either dealing with a
careful worm writer, or perhaps not even a worm at all, but rather the activities
of so called script kiddies, who follow a pre-made recipe found somewhere
on the Internet "underground". As far as we could tell this was a new type
of worm, or a new type of intrusive activity. In preparing the earlier version
of this Chapter, published as [Axe03], a very detailed search of the available
information sources revealed that these access requests had in fact been spotted
earlier and identified as being the product of the manual application of the
"cracking tool" sf ind.exe [Jel02]. This tool is employed by the pubstro
movement [Bra], that break into web and file servers in order to build a network
of computers with which to distribute "warez" (software distributed in violation
of copyright). We were justified in our observation that the access requests were
very similar to Nimda and may have been mistaken as such had we only looked
at the access requests in isolation. Indeed many system administrators let this
particular activity go unnoticed, mistaking it for an instance of Nimda [Jel02].

We subsequently realized that not all malicious activity present in Figure 7.3
had been reported. There exists a final pattern of malicious activity, pattern
five in the figure, consisting of two access requests, which are:

"GET /scripts/. .y,cOy,af. ./winnt/system32/cmd.exe?/c+dir+c:\ HTTP/1.1"

"GET /scripts/. 7,252e/. y,252e/winnt/system32/cmd. exe?/c+dir+c: \ HTTP/1.1"

It is interesting in that it consists of a very small number of actual accesses—
much smaller than for the other patterns. The first of these requests is interesting
in that it is very similar to one of the worm requests, namely:

"GET /scripts/. .y.cOy.af . ./winnt/system32/cmd.exe?/c+dir HTTP/1.0"

Looking closer at the pattern, we see that the two parallel coordinate plots
are similar but not exactly identical, one line differs. Studying the log records
associated with these requests we find that they originate from six different IP
addresses and that five of them match perfectly, while in one instance only one
of the requests is made. In all cases this is the only traffic we see from these

Discussion 125

hosts. Studying the available sources we learn that this pattern is also indicative
of the sf ind. exe tool mentioned in the previous paragraph, though run with
another set of options than in the previous instance. It is interesting to note
that an order of magnitude less accesses is made using these options than the
(presumably) more straightforward options that result in pattern number four.

Even though there are a few more patterns in the rest of the data similar to
pattern five, on closer inspection of the actual access requests they turn out to
be benign. We are confident that we have (finally) found all the troublesome
access requests.

6. Discussion
It is interesting to discuss the limitations of this method especially in light

of the fact that the first report on this experiment went to print without the fifth
pattern having been detected. A sticking point when doing visualization is that
we can only aid the human operator in doing the detection. No matter how
perfect this visual aid, the operator can still make mistakes. In the trellis plot
in this case there is a visually distinct difference between patterns one through
four and the benign patterns in that the benign patterns have a lot less traffic,
and hence stand out much less than the malicious traffic. From this perspective
it becomes possible to explain why the operator would mistake pattern five for
a benign pattern as the operator subconsciously makes the distinction between
the visually heavier intrusive patterns and the visually lighter benign patterns.
As we have seen this conclusion breaks down in the face of pattern five, as
even though it is visually similar to the benign patterns, it is still indicative of
an attempted intrusion. So as a pure detection tool, i.e. as a visual tool that
could help the operator differentiate between malicious and benign accesses,
this approach may leave something to be desired in the case where we have
much in the way of benign traffic. As a result, we are now less convinced that
this method is suitable in that respect than when the work was first published.
However, as a method to correlate access requests already found suspicious,
e.g. by running a honey pot or applying any of the other approaches that have
been presented in this book, the method presented here should still be effective
in the manner demonstrated by our experiment.

Another question mark regarding the applicability of these results is the issue
of scalability. The log file we investigated has only 59 unique requests, and as
earlier pointed out; more realistic log files from larger installations can contain
as much as 200 000 unique requests. The method of inspecting the requests
directly, using a trellis plot, as we have done here is unfeasible when the number
of unique requests is as large as 200 000. We conjecture that a data set of not
much more than on the order of 100 unique requests could be investigated using
the method developed here.

126 Visualization for Intrusion Detection—Hooking the Worm

We see two ways of addressing this problem to enable this method to scale
to larger data sets.

The first is to reduce the number of requests before applying the visualization.
One method of doing so could be to apply some form of anomaly detection to the
requests, sorting out unusual requests, and then visualizing the output from the
anomaly detection system to.^ This would allow us to tell apart the malicious
accesses from the inevitable false alarms that would creep into the output from
the anomaly detection system. An advantage of such an approach is that it
would allow the anomaly detection system to be tuned so that the number of
false alarms were relatively high—and hence the likelihood of detection would
be correspondingly higher—since we would not observe the output directly, but
use it as input for our visualization method.

The other approach (perhaps most realistically used in conjunction with the
first) is to reduce the number of unique requests by doing stepwise elimination,
by first identifying two or more similar patterns and then combining them into
one pattern (sub plot). Hereby iteratively reducing the number of subplots until
it is small enough that an overview of all of them can be made, analogous with
what we have performed in this experiment.

7. Conclusion
We have demonstrated that worm activity can be detected and analyzed by

applying a trellis plot of parallel coordinate visualizations on the log of a small
web server. The different requests made by worms can be correlated to the
particular type of worm making the requests. Furthermore, the clusters formed
by worm requests are markedly different from the clusters formed by benign
requests/or the data set in this paper. Other patterns of malicious requests were
also found, one which was worm like and distinct from benign access requests
and one that was not, and as a result was overlooked when the first version of
this paper was published. The visualization was successful even though the
number of data points visualized was larger than what is generally considered
the limit for such methods.

Four different worm (or worm like) activities were found. Two of these were
found to be indicative of the Nimda worm, one of the Code red worm, and
the last two of a then largely unknown malicious activity, later identified as
emanating from the manual application of the tool sf ind. exe.

8. Future Work
This investigation has really only scratched the surface of both what security

relevant information is hiding in data sets such as this and of what visualization

^i.e. the approach taken in Chapter 4.

Future Work 127

in general, and how parallel coordinate plots in particular can be brought to
bear to extract it. Also, the data set itself could be expanded with more realistic
traffic, and more advanced simulated attacks.

Chapter 8

EPILOGUE

1. Results in Perspective
Computer security must rely - in a broad sense - on perimeter defenses.

The term perimeter should not be interpreted too literally here; it need not
have a literal interpretation as in case of firewalls etc. To our mind, other
approaches that serve to separate the protected entity from the attacker's sphere
of observation and influence also falls under this heading, such as the approach
of statically (or dynamically) verify that source code is free of security defects
etc. cf. the concept of prevention in Halme et. al. [HB95], described in Chapter 2.

Perimeter defenses should be employed in depth. That is, just because one
has been granted—or otherwise gained—access through the outer perimeter,
one should not have free reign of the system.

However, no matter how well protected a system is, there will always be
chinks in its armor, and thus some sort of surveillance and response system
must be in place to detect and deal with intruders as and when they appear.
This system can sometimes possess a high degree of autonomy as is the case
with virus scanners, spam filters (using signatures of known spam) and sig
nature based intrusion detection systems. We would argue that in the general
case, dealing with the more imaginative threats, a human operator needs to be
in the loop and in order to be effective there should be tool support that enables
her to quickly gain an understanding of the situation. We call this the principle
of surveillance to set it apart from more traditional intrusion detection system
principles. To believe that automated systems could deal with other than the
most routine threats is overly optimistic, as the attacker in many cases could
analyze the defenses for weaknesses and attack us there, to wit: "there's no
equipment that man's ingenuity can devise that man's ingenuity can't also de
feat" [KCBH96, p. 51]. No perimeter defense, however strong, will not last

130 Epilogue

if it is left unguarded, providing the attacker with ample time to analyze and
ultimately defeat it.

2. Further Reading
The first mention in the literature of the idea to apply visualization to the

field of computer security (specifically, intrusion detection) of which we are
aware of is by Vert et al. in [VFM98].^ At the time of writing the area has
seen more investigation, and as such we will limit the treatment here to selected
applications of visualization in an intrusion detection setting much as ours,
where the intent has been to apply scientific visualization to help the operator
gain insight into the security state of the monitored systems.

The work of Vert, et al presents a preliminary visualization of the security
state of a computer system, by way of a spherical geometric primitive called a
Spicule—the characteristics of which are investigated—^but provides no opin
ion on how that security state should be calculated. More recently Erbacher
et. al. [EWF02] has presented work building on the previous work by Frincke
et. al. [FTM98]. This work is based on encoding information about network
traffic and alarms from a network of intrusion detection sensors, as glyphs onto
a stylized map of the network.

A small subfield (e.g. [ROT03, JWK02, LZHM02]) of anomaly detection
and visualization has arisen through the application of self-organizing maps
(also called Kohonen maps) [KohOl] to intrusion detection. The question of
visualization arises because the Kohonen map itself is a visual representation
of an underlying neural network model. The work cited above shares the char
acteristic that they all build some neural network model of network traffic or
host data and then present the resulting two dimensional scatter plot to the user.
The scatter plot typically illustrates various clusters within the data. A problem
here is that the interpretation of the plot is known to be quite tricky [KohOl].

Girardin et al. [GB98, Gir99] also uses self-organizing maps, but stresses
the link to the human operator. They also utilize other visualization methods
in addition to the self-organizing map itself, using the self-organizing map as
an automatic clustering mechanism. They report on successful experiments on
data with known intrusions. For input data they use connection statistics etc.
from TCP/IP traffic as their input data. While they study parameters of TCP/IP
connections, they do not study the data transferred.

Theo et al. [TMWZ02] visualize communication between pairs of routers
on the Internet using the BGP (Border Gateway Protocol) routing protocol.
Their choice of problem and visualization techniques are different from the
one presented here, and they do not delve as deeply into the analysis of the

^Predating this, the idea of applying visualization to intrusion detection was suggested to us by Professor
Erland Jonsson at a meeting in the autumn of 1996.

Conclusions and Future Work 131

security problems they detect (they are not as clearly security problems), but
they do visualize a greater amount of data more compactly than done in this
book and still manage to detect anomalies in the BGP traffic. This work has later
been continued by adding a NIDES [AFV95] based anomaly based intrusion
detection component and visualizing the output of the classifier together with the
BGP update messages. Another view then lets the user do what if calculations
setting different classifier parameters with visual feedback [TZT"^04].

In a similar vein, visualizing network flows (i.e. records that contain abstract
information about communication sessions between computers such as source
and destination IP addresses, how many bytes were transferred etc.) has been
studied recently by Yin et al. [YYT+04]. Here parallel coordinate visualization
is used (as we do) to selected parameters of these netflow records to detect
anomalies in network traffic.

A quick survey of the available commercial intrusion detection systems was
also made. Only two systems uses any degree of visualization in our sense of
the word. The first is CA Network Forensics^ which uses N-gram clustering
followed by a three dimensional visual display of the clusters. On the surface the
visual representation of the data in the clusters is similar to the one presented in
Chapter 4 (i.e. a general 3D network) but while the graphs may look similar they
express very different relations. There is no discussion as to the interpretation of
these graphs and the underlying structure of the data is not allowed to influence
the visualization.

The second is Lancope Therminator^ which is based on the Therminator
project described in [ZME04]. Therminator is a network level anomaly detec
tion tool inspired by methods from the field of statistical physics. The anomaly
detector works by building a model of network traffic as a modified Ehrenfest
urn model, the parameters of which are (in addition to other processing) vi
sualized as three dimensional bar charts, to give the user an overview of the
state space of the model. The authors report on experiments where anoma
lies have been injected into the traffic with the corresponding diagrams clearly
showing a marked difference between the anomalous event and the steady state.
The authors do not emphasize the visualization portion of the work presented
in [ZME04] and it is difficult to ascertain the degree to which the visualization
helps the operator gain insight into exactly what caused the deviation from the
normal graph, even though it seems promising.

The literature in the area has recently grown to become quite extensive, and
we cannot do it justice here. The interested reader is referred to [BCLY04] as
a starting point.

2"http://www3.ca.com/Solutions/Product.asp?ID=4856". Verified 2004-12-20.
^"http://www.lancope.com". Verified 2004-12-20.

http://www3.ca.com/Solutions/Product.asp?ID=4856
http://www.lancope.com

132 Epilogue

3. Conclusions and Future Work
The marriage between visualization and intrusion detection seems at the

outset a happy one. The application of visualization seems to bring benefits
in the form of increased understanding of the security state of the monitored
systems.

Even though the usability of intrusion detection systems and the application
of the principle of surveillance to the problem has seen some interest in recent
years, much work remains to be done. The current research (including this
monograph) really only scratches the surface of the possibilities in the field.
Even though early results seem very promising there still remains much re
search to be done by including the actual operator. Notably absent from current
research are user studies. These are more difficult to conduct than one might
first imagine. The process of classifying behavior into malicious and benign,
using approaches such as ours, is a highly skilled task (where operator training
would probably have a major influence on the results). It is also a highly cogni
tive task, and hence difficult to observe objectively. If such studies are to be of
value they would almost certainly be costly, and the state of research into how
to measure and interpret the results may not be sufficiently well developed to
justify such experiments. .

If the authors were to single out one area presented in this book as the most
promising for further research it would be the application of visualization to
make machine learning systems more accessible to the user. We have not found
much in the literature in the way of applying visualization to this area, and
based on the early results in this book the area looks promising.

References

[AFV95] D Anderson, T Frivold, and A Valdes. Next-generation intrusion-detection ex
pert system (NIDES). Technical Report SRI-CSL-95-07, Computer Science
Laboratory, SRI International, Menlo Park, CA 94025-3493, USA, May 1995.
{51,131}

[ALGJ98] Stefan Axelsson, Ulf Lindqvist, Ulf Gustafson, and Erland Jonsson. An approach
to UNIX security logging. In Proceedings of the 21st National Information
Systems Security Conference, pages 62-75, Crystal City, Arlington, VA, USA, 5 -
8 October 1998. NIST, National Institute of Standards and Technology/National
Computer Security Center. {21,26,27,35}

[And80] James R Anderson. Computer security threat monitoring and surveillance. Tech
nical Report Contract 79F26400, James R Anderson Co., Box 42, Fort Wash
ington, PA, 19034, USA, 26 February revised 15 April 1980. {20,25}

[AxeOOa] Stefan Axelsson. The base-rate fallacy and the difficulty of intrusion detection.
ACM Transactions on Information and System Security (TISSEC), 3(3): 186-205,
2000. {31, 59}

[AxeOOb] Stefan Axelsson. A preliminary attempt to apply detection and estimation theory
to intrusion detection. Technical Report 00-4, Department of Computer Engi
neering, Chalmers University of Technology, SE-412 96, Göteborg, Sweden,
March 2000. {22}

[Axe03] Stefan Axelsson. Visualization for intrusion detection: Hooking the worm. In The
proceedings of the 8th European Symposium on Research in Computer Security
(ESORICS2003), volume 2808 of LNCS, Gj0vik, Norway, 13-15 October 2003.
Springer Verlag. {13, 111, 124}

[Axe04a] Stefan Axelsson. Combining a bayesian classifier with visualisation: Under
standing the IDS. In Carla Brodley, Philip Chan, Richard Lippman, and Bill
Yurcik, editors. Proceedings of the 2004 ACM workshop on Visualization and
data mining for computer security, pages 99-108, Washington DC, USA, 29 Oc
tober 2004. ACM Press. Held in conjunction with the Eleventh ACM Conference
on Computer and Communications Security. {69}

134

[Axe04b]

[BAJ03]

[Bar04a]

[Bar04b]

[BCLY04]

[BKSOl]

[Bra]

[CEC91]

[CEROla]

[CEROlb]

[CMS99]

[DBS92]

Stefan Axelsson. Visualising intrusions: Watching the webserver. In Proceed
ings of the 19th IFIP International Information Security Conference (SEC2004),
Tolouse, France, 22-27 August 2004. IFIP. {49}

EmiHe Lundin Barse, Magnus Almgren, and Erland Jonsson. ConsoHdation and
evaluation of ids taxonomies. In Proceedings of the eighth Nordic Workshop on
Secure IT systems (NordSec 2003), Gj0vik, Norway, October 2003. {28,29}

Emilie Lundin Barse. Extracting attack manifestations to determine log data
requirements for intrusion detection. Technical Report 04-01, Department of
Computer Engineering, Chalmers University of Technology, Göteborg, Sweden,
June 2004. {26}

Emilie Lundin Barse. Logging for intrusion and fraud detection. PhD thesis.
School of Computer Science and Engineering, Chalmers University of Technol
ogy, Göteborg, Sweden, 2004. {27}

Carla Brodley, Philip Chan, Richard Lippman, and Bill Yurcik, editors.
VizSEC/DMSEC '04: Proceedings of the 2004 ACM workshop on Visualiza
tion and data mining for computer security, Washington DC, USA, 2004. ACM
Press. {131}

Barry Becker, Ron Kohavi, and Dan Sommerfield. Visualizing the simple
Bayesian classifier. In Usama Fayyad, Georges Grinstein, and Andreas Wierse,
editors. Information Visualization in Data Mining and Knowledge Discovery,
chapter 18, pages 237-249. Morgan Kaufmann Publishers, San Francisco, 2001.
{107}

Richard Braithwaite. The 'pubstro' Phenomenon: Robin Hoods of the In
ternet. Avaliable as: "http://www.deakJn.edu.au/infosys/docs/seminars/-
handouts/RichardBraithwaite.pdf" Verified: 2003-07-24. {124}

Commission of the European Communities. Information Technology Security
Evaluation Criteria, June 1991. Version 1.2. {2}

CERT Advisory CA-2001-19 'Code Red' Worm Exploiting Buffer Overflow in
IIS Indexing Service DLL. CERT Advisory by CERT/CC, Email: cert@cert.org,
CERT Coordination Center, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh PA 15213-3890, U.S.A., 19 July revised 17 January 2001.
"http://www.cert.org". {50, 111, 123}

CERT Advisory CA-2001-26 Nimda Worm. CERT advisory by CERT/CC,
Email: cert@cert.org, CERT Coordination Center, Software Engineering Insti
tute, Carnegie Mellon University, PittsburghPA 15213-3890, U.S.A., 18 Septem
ber revised 25 September 2001. "http://www.cert.org". {50,112,123}

Stuart K. Card, Jock D. MacKinlay, and Ben Shneiderman. Readings in Infor
mation Visualization—Using Vision to Think. Series in Interactive Technologies.
Morgan Kaufmann, Morgan Kaufmann Publishers, 340 Pine Street, Sixth Floor,
San Fransisco, CA 94104-3205, USA, first edition, 1999. ISBN 1-55860-533-9.
{4,5,49,92}

Herve Debar, Monique Becker, and Didier Siboni. A neural network component
for an intrusion detection system. In Proceedings of the 1992 IEEE Computer

http://www.deakJn.edu.au/infosys/docs/seminars/-
mailto:cert@cert.org
http://www.cert.org
mailto:cert@cert.org
http://www.cert.org

REFERENCES 135

Sociecty Symposium on Research in Security and Privacy, pages 240-250, Oak
land, CA, USA, May 1992. IEEE, IEEE Computer Society Press, Los Alamitos,
CA, USA. {44}

[Dea72] B. H. Deatherage. Auditory and other sensory forms of information. In
HP Van Cott and RG Kinkade, editors. Human Engineering Guide to Equip
ment design. Army, Navy, Air Force, 1972. {37}

[EWF02] Robert F. Erbacher, Kenneth L. Walker, and Deborah A. Frincke. Intrusion and
Misuse Detection in Large-Scale Systems. Computer Graphics and Applica
tions, 22(l):38-48, January 2002. {130}

[FGM"^99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P Leach, and T. Bemers-
Lee. RFC2616—Hypertext Transfer Protocol—HTTP/1.1. Request for Com
ment 2616, The Internet Society, 1999. {72, 98}

[Fra94] Jeremy Frank. Artificial intelligence and intrusion detection: Current and future
directions. Division of Computer Science, University of California at Davis,
Davis, CA. 95619, 9 June 1994. {21}

[FSBK03] Laura Feinstein, Dan Schnackenberg, Ravindra Balupari, and Darrell Kindred.
Statistical Approaches to DDoS Attack Detection and Response. In Proceedings
of the DARPA Information Survivability Conference and Exposition, page 303.
IEEE Computer Society, IEEE, 22-24 April 2003. {119}

IFTM98] Deborah A. Frincke, Donald L. Tobin, and Jesse C. McConnell. Research Issues
in Cooperative Intrusion Detection Between Multiple Domains. In Proceedings
of Recent advances in intrusion detetection RAID'98, 1998. {130}

[GB98] Luc Girardin and Dominique Brodbeck. A visual approach for monitoring
logs. In The Proceedings of the 12th Systems Administration Conference
(LISA '98), pages 299-308, Boston, Massachusetts, USA, 6-11 December 1998.
The USENIX Association. {130}

[Gir99] Luc Girardin. An eye on network intruder-administrator shootouts. In The Pro
ceedings of the Workshop on Intrusion Detection and Network Monitoring, Santa
Clara, California, USA, 9-12 April 1999. The USENIX Association. {130}

[GLC"^98] Isaac Graf, Richard Lippman, Robert Cunningham, David Fried, Kris Kendall,
Seth Webster, and Marc Zissman. Results of DARPA 1998 offline intrusion
detection evaluation. "http://www.ll.nnit.edu/IST/ideval", December 15 1998.
{42,46}

[GolOO] Dieter Gollmann. On the verification of cryptographic protocols. Presentation
at Karistad University, 11 February 2000. {17}

[Gra02] Paul Graham. A plan for spam, http://www.paulgraham.com/spam.html, August
2002. {9, 70}

[HB95] Lawrence R. Halme and Kenneth R. Bauer. AINT misbehaving—A taxonomy
of anti-intrusion techniques. In Proceedings of the 18th National Information
Systems Security Conference, pages 163-172, Baltimore, MD, USA, October
1995. NIST, National Institute of Standards and Technology/National Computer
Security Center. {15,129}

http://www.ll.nnit.edu/IST/ideval
http://www.paulgraham.com/spam.html

136

[HL93]

[HLF+01]

[Ins97]

[Jel02]

[Jon98]

[JWK02]

[KCBH96]

[KMRV03]

[KMT04]

[KohOl]

[KSD96]

[KV03]

Paul Helman and Gunar Liepins. Statistical foundations of audit trail analysis for
the detection of computer misuse. IEEE Transactions on Software Engineering,
19(9):886-901, September 1993. {27,42,44,45}

Joshua W. Haines, Richard R Lippmann, David J. Fried, Eushiuan Tran, Steve
Bos well, and Marc A. Zissman. 1999 DARR\ intrusion detection system evalu
ation: Design and procedures. Technical Report ESC-TR-99-061, MIT Lincoln
Laboratory Technical Report, February 2001. {43}

Alfred Inselberg. Multidimensional Detective. In Proceedings of lnfoVis'97,
IEEE Symposium on Information Visualization, pages 100-107. IEEE Informa
tion visuaHsation, IEEE, 1997. {13,114,115}

Peter Jelver. Pubstro-hacking—Systematic Establishment of Warez Servers on
Windows Internet Servers. Avaliable as: "http://www.esec.dk/pubstro.pdf"
Verified: 2003-07-24, 23 July 2002. {124}

Erland Jonsson. An integrated framework for security and dependability. In
Proceedings of the New Security Paradigms Workshop 1998, Charlottesville,
VA, USA, 22-25 September 1998. {2}

Chaivat Jirapummin, Naruemon Wattanapongsakom, and Prasert Kanthamanon.
Hybrid neural networks for intrusion detection system. In Proceedings of The
2002 International Technical Conference on Circuits/Systems, Computers and
Communications (ITC-CSCC 2002), pages 928-931, Phuket, Thailand, 16-
19 July 2002. {130}

Andrew Kain, Ken Connor, Paul Brown, and Neil Hanson. SAS Security Hand
book. William Heinemann, Reed Intl. Books Ltd., Michelin House, 81 Fulhamn
Rd., London SW3 6RB, first edition, 1996. ISBN 0-434-00306-9. {129}

Christopher Kruegel, Darren Mutz, William Robertson, and Fredrik Valleur.
Bayesian event classification for intrusion detection. In Proceedings of the 19th
Annual Computer Security Applications Conference, Las Vegas, Nevada, USA,
December 2003. {44,45}

Kevin S. Killourhy, Roy A. Maxion, and Kymie M. C. Tan. A defence-centric
taxonomy based on attack manifestations. In Proceedings of the International
Conference on Dependable Systems and Networks (DSN 2004), Florence, Italy,
June 2004. {26}

Teuvo Kohonen. Self-Organizing Maps, volume 30 of Springer Series in Infor
mation Sciences. Springer Veriag, Third edition, 2001. ISBN 3-540-67921-9,
ISSN 0720-678X. {130}

Ron Kohavi, Dan Sommerfield, and James Dougherty. Data mining using
MLC++: A machine learning library in C++. In Tools with Artificial Intelli
gence, pages 234-245. IEEE Computer Society Press, 1996. {107}

C. Kruegel and G. Vigna. Anomaly detection of web-based attacks. In Proceed
ings of the 10th ACM Conference on Computer and Communication Security
(CCS '03), pages 251-261, Washington DC, USA, October 2003. ACM Press.
{67}

http://www.esec.dk/pubstro.pdf

REFERENCES 137

[LB98] Terran Lane and Carla E. Brodie. Temporal sequence learning and data reduction
for anomaly detection. In 5th ACM Conference on Computer & Communications
Security, pages 150-158, San Francisco, California, USA, 3-5 November 1998.
{27,41}

[LBMC94] Carl E Landwehr, Alan R Bull, John P McDermott, and William S Choi. A taxon
omy of computer program security flaws. ACM Computing Surveys, 26(3):211-
254, September 1994. {25,26}

[Lee99] Wenke Lee. A data mining framework for building intrusion detection models. In
IEEE Symposium on Security and Privacy, pages 120-132, Berkeley, California,
May 1999. {29,44,45}

[LFG'*' 00] Richard R Lippmann, David J. Fried, Isaac Graf, Joshua W. Haines, Kristoper R.
Kendall, David McClung, Dan Weber, Seth E. Webster, Dan Wyschogrod,
Robert K. Cunningham, and Marc A. Zissman. Evaluating intrusion detection
systems: the 1998 DARPA off-line intrusion detection evaluation. In Proceed
ings of the 2000 DARPA Information Survivability Conference and Exposition,
volume 2, 2000. {43}

[LFM+02] Wenke Lee, Wei Fan, Matt Miller, Sal Stolfo, and Erez Zadok. Towards cost-
sensitive modeling for intrusion detection. Journal of Computer Security, 10(1),
2002. {46}

[LGG*^98] Richard R Lippmann, Isaac Graf, S. L. Garfinkel, A. S. Gorton, K. R. Kendall,
D. J. McClung, D. J. Weber, S. E. Webster, D. Wyschogrod, and M. A. Zissman.
The 1998 DARPA/AFRL off-line intrusion detection evaluation. The First Work
shop on Recent Advances in Intrusion Detection (RAID-98), Lovain-la-Neuve,
Belgium, 14-16 September 1998. {42,71}

[LJ97] Ulf Lindqvist and Erland Jonsson. How to systematically classify computer
security intrusions. In Proceedings of the 1997 IEEE Symposium on Security
& Privacy, pages 154-163, Oakland, CA, USA, 4-7 May 1997. IEEE, IEEE
Computer Society Press, Los Alamitos, CA, USA. {25,26}

[LMPT98] Ulf Lindqvist, Douglas Moran, Phillip A Porras, and Mabry Tyson. Designing
IDLE: The intrusion data library enterprise. Abstract presented at RAID '98
(First International Workshop on the Recent Advances in Intrusion Detection),
Louvain-la-Neuve, Belgium, 14-16 September 1998. {22}

[LMSOO] W Lee, M. Miller, and S. Stolfo. Toward cost-sensitive modeling for intrusion
detection, 2000. {22}

[LXO1] Wenke Lee and Dong Xiang. Information-theoretic measures for anomaly detec
tion. In IEEE Symposium on Security and Privacy, Oakland, California, USA,
14-16 May 2001. IEEE. {63}

[LZHM02] P. Lichodzijewski, A.N. Zincir-Heywood, and Heywood M.I. Host-based in
trusion detection using self-organizing maps. In The proceedings of the IEEE
International Joint Conference on Neural Networks. IEEE, May 2002. {130}

[Mat96] Robert Matthews. Base-rate errors and rain forecasts. Nature, 382(6594):766,
29 August 1996. {32}

138

[Mat97]

[Max03]

[MC03]

[McHOO]

[Mea93]

[MW04]

[NP89]

[Nyg94]

[Pfl97]

[Pie48]

[PN98]

[Pro03]

[Ras86]

Robert Matthews. Decision-theoretic hmits on earthquake prediction. Geophys.
J. Int., 131(3):526-529, December 1997. {32}

Roy A. Maxion. Masquerade detection using enriched command Unes. In In
ternational Conference on Dependable Systems & Networks (DSN-03), pages
5-14, San Fransisco, California, USA, 22-25 June 2003. IEEE. {26}

Matthew V. Mahoney and Phihp K. Chan. An analysis of the 1999
DARPA/Lincoln Laboratory evaluation data for network anomaly detection. In
Giovanni Vigna, Chrisopher Kruegel, and Erland Jonsson, editors, Recent Ad
vances in Intrusion Detection: 6th International Symposium RAID 2003, LNCS,
pages 220-237. Springer Verlag GmbH, November 2003. ISBN: 3-540-40878-9.
{42,73}

John McHugh. Testing intrusion detection systems: a critique of the 1998 and
1999 darpa intrusion detection system evaluations as performed by lincoln lab
oratory, ACM Trans. Inf. Syst. Secur, 3(4):262-294, 2000. {43, 50, 71}

Catherine A Meadows. An outline of a taxonomy of computer security re
search and development. In Proceedings of the 1992-1993 ACM SIGSAC New
Security Paradigms Workshop, pages 33-35, Little Compton, Rhode Island, 22-
24 September 1992 and 3-5 August 1993. IEEE Computer Society Press. {2}

T.A. Meyer and B. Whateley. SpamBayes: Effective open-source, Bayesian
based, email classification system. In Proceedings of the First Conference on
Email and Anti-Spam (CEAS), Mountain View, CA, USA, 30-31 July 2004. {11,
90,91}

Peter G Neumann and Donn B Parker. A summary of computer misuse tech
niques. In Proceedings of the 12th National Computer Security Conference,
pages 396^07, Baltimore, Maryland, 10-13 October 1989. {26}

Else Nygren. Modema tider: teknikutveckling inom medicinsk service. Techni
cal report, Värdförbundet SHSTF42, Stockholm, Sweden, 1994. ISBN91-7043-
021-7, ISSN 0349-1757, In Swedish. {37}

Charles P. Pfleeger. Security in Computing. Prentice Hall, second edition, 1997.
ISBN 0-13-185794-0. {111}

G. McGuire Pierce. Destruction by demolition, incendiaries and sabotage. Field
training manual. Fleet Marine Force, US Marine Corps, 1943-1948. Reprinted:
Paladin Press, PO 1307, Boulder CO, USA. {3,32}

Thomas H. Ptacek and Timothy N. Newsham. Insertion, evasion, and denial of
service: Eluding network intrusion detection. Technical report. Secure Networks
Inc., January 1998. {27}

Niels Provos. Improving host security with system call policies. In Proceedings
of the 12th USENIX Security Symposium, Washington D.C., USA, August 2003.
{69}

Jens Rasmussen. Information processing and human-machine interaction, An
appoach to cognitive engineering. Elsevier Science Publishing Co., Inc., 52
Vanderbild Avenue, New York, New York 10017, first edition, 1986. {36}

REFERENCES 139

[RDL87] Jens Rasmussen, Keith Duncan, and Jacques Leplat, editors. New Technology
and Human Error (New Technologies and Work). John Wiley & Sons, March
1987. {6,7,73}

[RN95] Stuart J. Rüssel and Peter Norvig. Artificial Intelligence—A Modern Approach,
chapter 14, pages 426-435. Prentice Hall Series in Artificial Intelligence. Pren
tice Hall International, Inc., London, UK, first edition, 1995. Exercise 14.3.
{33}

[Roe99] Martin Roesch. Snort: Lightweight intrusion detection for networks. In Proceed
ings of the 13th USENIX conference on System administration, pages 229-238.
USENIX Association, 1999. {63}

[ROT03] Manikantan Ramadas, Shawn Ostermann, and Brett Tjaden. Detecting anoma
lous network traffic with self-organizing maps. In Proceedings of the Sixth
International Symposium on Recent Advances in Intrusion Detection, LNCS,
Pittsburgh, PA, USA, 8-10 September 2003. Springer Verlag. {130}

[SpeO 1] Robert Spence. Information Visualization. ACM Press Books, Pearson education
ltd., Edinburgh Gate, Harlow, Essex CM20 2JE, England, first edition, 2001.
ISBN 0-201-59626-1. {4,49,114,118}

[Sto95] Clifford Stoll. The Cuckoo's Egg: Tracking a Spy Through the Maze of Computer
Espionage. Pocket Books, July 1995. {36}

[TM02] Kymie M. C. Tan and Roy A. Maxion. "Why 6?" Defining the operational limits
of stide, an anomaly-based intrusion detector. In Proceedings of the 2002 IEEE
Symposium on Security and Privacy. IEEE Computer Society, 2002. {91}

[TMWZ02] Soon Tee Teoh, Kwan-Liu Ma, S. Felix Wu, and Xiaoliang Zhao. Case Study:
Interactive Visualization for Internet Security. In Proceedings of IEEE Visualiza
tion 2002, The Boston Park Plaza hotel, Boston, Massachusetts, USA, 27 October
to 1 November 2002. IEEE Computer society. {130}

[Tre68] Harry L. Van Trees. Detection, Estimation, and Modulation Theory, Part I,
Detection, Estimation, and Linear Modulation Theory. John Wiley and Sons,
Inc., 1968. {23,24,29,41,42}

[TufOl] Edward R. Tufte. The Visual Display of Quantitative Information. Graphics
Press, second edition. May 2001. ISBN 0-96-139214-2. {74,75,93}

[TZT+04] Soon Tee Teoh, Ke Zhang, Shih-Ming Tseng, Kwan-Liu Ma, and S. Felix Wu.
Combining visual and automated data mining for near-real-time anomaly detec
tion and analysis in bgp. In VizSEC/DMSEC '04: Proceedings of the 2004 ACM
workshop on Visualization and data mining for computer security, pages 35-44,
Washington DC, USA, 2004. ACM Press. {131}

[USAOl] 'Ny Times' Outage Caused by Nimda virus, "http://www.usatoday.eom/tech/-
news/2001/11/01/new-york-times-outage.htnn", 1 December 2001. Verified
2003-04-11. {112}

[VFM98] Greg Vert, Deborah A. Frincke, and Jesse C. McConnell. A Visual Mathematical
Model for Intrusion Detection. In Proceedings of the 21st National Information

http://www.usatoday.eom/tech/-

140

Systems Security Conference, Crystal City, Arlington, VA, USA, 5-8 October
1998. NIST, National Institute of Standards and Technology/National Computer
Security Center. {130}

[VL89] H S Vaccaro and G E Liepins. Detection of anomalous computer session activity.
In Proceedings of the 1989 IEEE Symposium on Security and Privacy, pages
280-289, Oakland, California, 1-3 May 1989. {44}

[VRB04] G. Vigna, W. Robertson, and D. Balzarotti. Testing Network-based Intrusion
Detection Signatures Using Mutant Exploits. In Proceedings of the ACM Con
ference on Computer and Communication Security (ACM CCS), Washington,
DC, October 2004. {43}

[VSOO] Alfonso Valdes and Keith Skinner. Adaptive, model-based monitoring for cy
ber attack detection. In H. Debar, L. Me, and F. Wu, editors, Recent Advances
in Intrusion Detection (RAID 2000), volume 1907 of Lecture Notes in Com
puter Science, pages 80-92, Toulouse, France, October 2000. Springer-Verlag,
Berlin—Heidelberg, Germany. {70}

[WFP99] Christina Warrender, Stephanie Forrest, and Barak Perlmutter. Detecting in
trusions using system calls: Alternative data models. In IEEE Symposium on
Security and Privacy, pages 133-145, Berkeley, CaUfomia, May 1999. {42,44,
45,91,98,99}

[WH99] Christopher D. Wickens and Justin G. Hollands. Engineering Psychology and
Human Performance. Prentice Hall, third edition, September 1999. ISBN 0-
32-104711-7. {6,7,73,89}

[Wic92] Christopher Wickens. Engineering psychology and human performance. Harper
Collins Publishers Inc., 10 East 53rd Street, New York, NY 10022, second edi
tion, 1992. {36,37}

[Yer04] William S. Yerazunis. The spam-filtering accuracy plateau at 99.9% accuracy
and how to get past it. In Proceedings of the 2004 MIT Spam Conference, MIT
Cambridge Massachusetts, USA, 16 January 2004. Revised 6 February. {11,82,
90,91}

[YYT"^04] Xiaoxin Yin, William Yurcik, Michael Treaster, Yifan Li, and Kiran Lakkaraju.
Visflowconnect: netflow visualizations of link relationships for security situa
tional awareness. In VizSEC/DMSEC '04: Proceedings of the 2004 ACM work
shop on Visualization and data mining for computer security, pages 26-34,
Washington DC, USA, 2004. ACM Press. {131}

[ZME04] John Zachary, John McEachen, and Dan Ettlich. Conversation exchange dy
namics for real-time network monitoring and anomaly detection. In IWIA '04:
Proceedings of the Second IEEE International Information Assurance Workshop
(IWIA'04), page 59. IEEE Computer Society, 2004. {131}

Author Index

Almgren, Magnus 28, 29
Anderson, D 51, 131
Anderson, James P. 20, 25
Axelsson, Stefan 13, 21, 22, 26, 27, 31, 35, 49, 59,
69, 111,124

Balupari, Ravindra 119
Balzarotti, D. 43
Barse, Emilie Lundin 26-29
Bauer, Kenneth R. 15, 129
Becker, Barry 107
Becker, Monique 44
Bemers-Lee, T. 72, 98
Boswell, Steve 43
Braithwaite, Richard 124
Brodbeck, Dominique 130
Brodie, Carla E. 27, 41
Brown, Paul 129
Bull, Alan R 25, 26

Fried, David J. 43
Frincke, Deborah A. 130
Frivold,T51, 131
Frystyk, H. 72, 98

Garfinkel, S. L.42,71
Gettys, J. 72, 98
Girardin, Luc 130
Gollmann, Dieter 17
Gorton, A. S. 42, 71
Graf, Isaac 42, 43, 46, 71
Graham, Paul 9, 70
Gustafson,Ulf21,26,27,35

Haines, Joshua W. 43
Halme, Lawrence R. 15, 129
Hanson, Neil 129
Helman,Paul27,42,44,45
Hollands, Justin G. 6, 7, 73, 89

Card, Stuart K. 4, 5, 49, 92
Chan, Philip K. 42, 73
Choi, William S 25, 26
Connor, Ken 129
Cunningham, Robert 42, 46
Cunningham, Robert K. 43

Deatherage, B. H. 37
Debar, Herve 44
Dougherty, James 107

Erbacher, Robert F. 130
Ettlich, Danl31

Fan, Wei 46
Feinstein, Laura 119
Fielding, R. 72, 98
Forrest, Stephanie 42, 44, 45, 91, 98, 99
Frank, Jeremy 21
Fried, David 42, 46

Inselberg, Alfred 13, 114,115

Jelver, Peter 124
Jirapummin, Chaivat 130
Jonsson, Erland 2, 21, 25-29, 35

Kain, Andrew 129
Kanthamanon, Prasert 130
Kendall, K. R. 42, 71
Kendall, Kris 42, 46
Kendall, Kristoper R. 43
Killourhy, Kevin S. 26
Kindred, Darrell 119
Kohavi, Ronl07
Kohonen, Teuvo 130
Kruegel, C. 67
Kruegel, Christopher 44, 45

Lakkaraju, Kiran 131
Landwehr, Carl E 25, 26

142

Lane, Terran27, 41
Leach, P. 72, 98
Lee, W. 22
Lee, Wenke 29, 44-46, 63
Li,Yifanl31
Lichodzijewski, P. 130
Liepins, G E 44
Liepins, Gunar 27, 42, 44, 45
Lindqvist, Ulf 21, 22, 25-27, 35
Lippman, Richard 42, 46
Lippmann, Richard P. 42, 43, 71

Ma, Kwan-Liul30, 131
MacKinlay, Jock D. 4, 5, 49, 92
Mahoney, Matthew V. 42, 73
Masinter, L. 72, 98
Matthews, Robert 32
Maxion, Roy A. 26, 91
McClung,D.J.42,71
McClung, David 43
McConnell, Jesse C. 130
McDermott, John P 25, 26
McEachen, John 131
McHugh,John43,50,71
Meadows, Catherine A 2
Meyer, T.A. 11,90,91
M.I., Heywood 130
Miller, M. 22
Miller, Matt 46
Mogul, J. 72, 98
Moran, Douglas 22
Mutz, Darren 44, 45

Neumann, Peter G 26
Newsham, Timothy N. 27
Norvig, Peter 33
Nygren, Else 37

Ostermann, Shawn 130

Parker, Donn B 26
Perlmutter, Barak 42, 44, 45, 91, 98, 99
Pfleeger, Charles P i l l
Pierce, G. McGuire 3, 32
Porras, Phillip A 22
Poskanzer, Jef 112
Provos, Niels 69
Ptacek, Thomas H. 27

Ramadas, Manikantan 130
Rasmussen, Jens 36
Robertson, W. 43
Robertson, William 44, 45
Roesch, Martin 63
Rüssel, Stuart J. 33

Schnackenberg, Dan 119
Shneiderman, Ben 4, 5, 49, 92

Siboni, Didier 44
Skinner, Keith 70
Sommerfield, Dan 107
Spence, Robert 4, 49, 114, 118
Stolfo, S. 22
Stolfo, Sal 46
Stoll, Clifford 36

Tan, KymieM. C. 26, 91
Teoh, Soon Tee 130, 131
Tjaden, Brett 130
Tobin, Donald L. 130
Tran, Eushiuan 43
Treaster, Michael 131
Trees, Harry L. Van 23, 24, 29, 41, 42
Tseng, Shih-Ming 131
Tufte, Edward R. 74, 75, 93
Tyson, Mabry 22

Vaccaro, H S 44
Valdes,A51,131
Valdes, Alfonso 70
Valleur, Fredrik 44, 45
Vert, Greg 130
Vigna, G. 43, 67

Walker, Kenneth L. 130
Warrender, Christina 42, 44, 45, 91, 98, 99
Wattanapongsakom, Naruemon 130
Weber, D.J. 42, 71
Weber, Dan 43
Webster, S.E. 42, 71
Webster, Seth 42, 46
Webster, Seth E. 43
Whateley,B. 11,90,91
Wickens, Christopher 36, 37
Wickens, Christopher D. 6, 7, 73, 89
Wu, S.Felix 130, 131
Wyschogrod, D. 42, 71
Wyschogrod, Dan 43

Xiang, Dong 63

Yerazunis, William S. 11, 82, 90, 91
Yin, Xiaoxin 131
Yurcik, William 131

Zachary, John 131
Zadok, Erez 46
Zhang, Ke 131
Zhao, Xiaoliang 130
Zincir-Heywood, A.N. 130
Zissman, M. A. 42, 71
Zissman, Marc 42, 46
Zissman, Marc A. 43

Index

Abnormal, 27
Abnormality

absolute, 62
relative, 62

Access log, 51, 86
Access request

intrusive, 56
peculiar, 56
suspect, 56

Alarm, 22
Amortize the cost, 64
Analysis, 53
Anomaly, 20
Anomaly detection, 20, 28, 69
Anti-intrusion techniques, 15
Aol.com, 52
Apache, 50, 72

common log format, 50
A priori probabilities, 24
Assumptions, 37
Attack

buffer overrun, 58
cgi-bin, 58
classification of, 80
formmail, 57
insertion of, 43
misc, 58
pathaccess, 58
proxy, 58
denial-of-service, 119
spam, 57
Unicode, 57, 106, 123

Attack patterns, 65, 101
Attack tail, 59
Attempted intrusions, 64
Audit data, 27

collection, 21
processing, 21
storage, 21

Audit record, 35

Automated detection, 19
Automated learning, 69

over training, 69
supervised, 69
unsupervised, 69

Base-rate fallacy, 32, 38, 40, 73
Bayes criterion, 24
Bayesian belief networks, 44
Bayesian classifier, 69, 82
Bayesian detection rate, 38
Bayesian false alarm rate, 63
Bayesian filtering, 70
Bayesian learning network algorithms, 70
Bayesian spam classifier, 82
Bayes optimal detector, 24, 28
Bayes's theorem, 32
Bayesvis, 74

comparison with Chi2vis, 104
Benevolent, 25
Benign traffic, 63
Bias, 37
Binary detection theory, 23
Buffer overrun, 58, 73
Burglar alarm, 3
C2 logging, 35
Capture the Capture-the-Flag, 71
Car alarm, 19
Cgi-bin attack, 58
Cgi-script, 73, 83
Chaff, 64, 85, 100
Channel, 26
Chi2vis, 92
Classical detection model, 23
Clustering factor, 35
Code Red, 59
Cognitive skills, 4
Cognitive task, 36
Command interpreter, 77
Component frequency, 51
Computer security

http://Aol.com

144

availability, 2
CIA, 2
confidentiality, 2
integrity, 2
no unauthorized use, 2

Configuration data, 21
Continuous, 27
Cost, 24
CRM-114,91
Cutoff, 51
DARPA, 42
Data

owner of, 18
Decision making chain, 36
Decision rule, 23
Defcon, 71
Denial-of-service, 72, 111
Descriptive statistics, 51
Detect, 36
Detection and estimation theory, 20, 22-23, 42
Detection rate, 28, 38, 62, 85

vs false positives, 81
Directed edges, 52
Discarding data, 49
Discrete, 27
Disease, 33
Doctor, 33
Double ring structure, 52
Ease of use, 32
EBayes, 70
Evaluate, 36
Evaluation, 82
Evidence Visualizer, 107
Experience, 37
External cognition, 4
False alarm, 83

low tolerance, 37
suppression capability, 59

False alarm rate, 25, 28, 38
False negative rate, 37
False negatives, 73
False positive rate, 37
Formmail attack, 57
Frequentist, 46
General graph, 52
Google, 86
Graph, 52
Graph visualization, 49, 52
Haystack, 40
Healthy, 33
Heatmap, 74, 94
Hidden Markov Model detector, 45
Honey pot, 112
Hotmail.com, 52
Hour glass shape, 65
HTTP, 50

access request, 72, 92

authentication, 72
Human analyst, 72
Human-machine interaction, 73
Human operator, 36
Hypothesis, 23, 37
Identify, 36
IIS, 59
Indication and warning, 20
Information visualization, 4, 49
Insider, 18
Interactive response, 79
Intrusion

definition of, 17
Intrusion detection, 17

circumvention, 64
Intrusion detection system, 20
Intrusion

pathaccess, 105
Intrusion prevention, 15

countermeasures, 16
deflection, 16
detection, 16
deterrence, 16
pre-emption, 15
prevention, 16

Intrusion signatures, 89
Investigation, 39
John Doe, 52
Level of training, 37
Lincoln Labs, 42, 50, 71, 73
Log reduction, 50-51

effectiveness of, 59
Machine learning, 89
Malfunction, 37
Malicious, 18,25
Malicious requests, 77, 96
Markovian matching, 91
Markov model, 90
Masquerader, 20, 25
Microsoft

HE, 57
IIS, 57, 123
operating systems, 77

Mise attack, 58
Misclassification, 91, 41
Mistrust, 37
Mozilla, 74
Multi-valued problem, 26
Multivariate data, 114
Neyman-Pearson criteria, 24
NIDES,51
Noise, 23
Noisy channel, 23
Nuclear power station, 36
Objectivist, 46
Observation space, 23, 27
Observe, 36

http://Hotmail.com

INDEX 145

Optimal detector, 25
Paper mill, 36
Parallel coordinate plot, 114
Pathaccess attack, 58
Pattern, 53
Payload, 77, 111,65
Perimeter defence, 16
Plant control, 36
Positive predictive value, 38
Privacy, 50
Probabilistic transition mechanism, 23
Procedure, 36
Process automation, 36
Profile, 20
Proxy attack, 58
Randomized test, 42
Reference data, 22
RIPPER, 44
ROC curve, 29, 41-42

concave, 42
convex, 42
dip, 42

Rudolph
red nosed, 41

Script kiddies, 124
Security camera, 19
Security incident, 36
Security policy, 18

not as detailed, 49
Shell code, 59
Signal, 23
Signal model, 23
Signature based intrusion detection, 72

tuning of, 63
Signature detection, 20, 28
Simulated background traffic, 42
Site Security Officer, 19
Snort, 63, 72
Source, 25
Source model, 23
Spam, 65, 70, 74
Spam attack, 52
SpamBayes, 91
Spam detectors, 90
Spotfire, 115
State of vigilance, 37

Steel mill, 36
Subtree, 54
Sufficient statistic, 24
SunOS, 35
Surveillance, 3, 16-17
SYN-flooding, 26
Synthesized data, 73
Target state, 36
Task, 36
Test accuracy, 33
Threshold, 82, 27
Thttpd, 112
Token frequency table, 85
Training, 90
Training data, 82, 101
Training

operator, 109
under, 79
until no false positives, 100, 106

Transparency, 32
Tree, 53
Tree visualization, 53
Trellis plot, 111,114, 118
True positive rate, 37
Tulip, 52
Unauthorized access, 18
Unicode attack, 57, 84
Unique requests, 64
US Air Force base, 43
User experiments, 55
User interface, 76
Venn diagram, 34
Visualizing

amount of data, 49
overview and detail, 92

Webserver, 50
Webserver access logs, 98
Webserver logs, 50
Web traffic pattern, 63
Window length, 91
Wisdom and Sense, 44
Worms, 111

Code red. 111
Nimda, 112,123

