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Foreword 

This monograph is the outgrowth of Stefan Axelson's PhD Dissertation at 
Chalmers University in Göteborg, Sweden. The dissertation, in turn collects 
a number of research efforts performed over a period of six years or so into a 
coherent whole. It was my honor to serve as the "opponent" at Dr. Axelsson's 
examination. In the Swedish system, it is the job of the opponent to place the 
candidate's work into a broader perspective, demonstrating its significance and 
contributions to the field and then to introduce the work to the attendees at 
the examination. This done, the candidate presents the technical details of the 
work and the opponent critiques the work giving the candidate the opportunity 
to defend it^. This forward is adapted from the introduction that I gave at the 
examination and should serve to acquaint the reader, not only with the work at 
hand, but also with the field to which it applies. The title of the work, "Under­
standing Intrusion Detection Through Visualization," is particularly telling. As 
is the case with any good piece of research, we hope to gain an understanding of 
a problem, not just a recipe or simple solution of immediate, but limited utility. 

For much of its formative period, computer security concentrated on devel­
oping systems that, in effect, embodied a fortress model of protection. These 
systems were intended to be immune to most of the attacks that we see today 
and were supposed to be capable of processing classified material at multiple 
levels of security (MLS). The problem of building highly secure systems was 
harder than thought, but, by the early 1990s, a number of promising systems 
were beginning to emerge. 

In the mid 1980s commodity personal computers emerged. These were 
initially produced without any regard for security - not even protecting the user 

^ It is interesting to note that Swedish technical universities received the ability to award PhDs rather late 
(1940 in the case of Chalmers), as it was felt that the work of the master engineer had to stand above any 
criticism and it was thus inappropriate to subject it to a form of examination which in its very form relied on 
the work being subjected to critique. 
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from himself. The military adopted these platforms wholesale in spite of their 
insecurity and stopped substantial MLS research efforts in the mid 1990s. 

By the late 1980s, broad band networks were available to most corpora­
tions and to many educational institutions. Increasingly, these were using PC 
based platforms as network nodes. Node level security was minimal and diffi­
cult. Managing large numbers of machines securely was difficult or impossible. 
Firewalls were introduced to provide a single point of protection for an orga­
nization. Intrusion Detection Systems (IDS) were introduced to detect attacks 
either from the outside or from the inside, providing another line of defense for 
the increasingly difficult to manage firewalls. 

In 1980, James Anderson produced a report entitled "Computer Security 
Threat Monitoring and Surveillance" that sets up the framework for what we 
now know as intrusion detection. Anderson (and later Denning) assumed that 
user behavior was regular enough to permit statistical models that would equate 
unusual (or anomalous) with malicious. In general, this is not true, but anomaly 
based systems are still the focus of much research. The other primary area of 
activity is signature based systems in which patterns of activity that match pre­
viously known intrusions are sought. Finding the right pattern at an appropriate 
level of abstraction is not easy and most truly new attacks are undetectable using 
signatures. 

There are a number of problems that beset both production and research 
intrusion detection systems. These provide a context for the monograph and 
include: 1) Lack of a fundamental theoretical basis for intrusion detection and 
2) Poor understanding of environments in which intrusion detection systems 
function. These lead to excessive false alarms, inappropriate training for ma­
chine learning systems, poorly formed signatures for abuse detection and many 
other problems. The monograph directly addresses several of these problems. 
It is the result of a series of investigations that began late in the last century. 
Although individual results have appeared in a variety of forums, they represent 
a coherent body of work and a significant contribution to the field. 

In the next few paragraphs, we will introduce each of these works and place 
them in perspective. The technical details of each form a chapter in the mono­
graph. 

The Base-Rate Fallacy and the Difficulty of Intrusion Detection 
Originally presented at RAID 99, this was my first introduction to the Dr. 
Axelsson and his work. It deals with the problem of excessive false alarm rates, 
a problem that plagues many intrusion detection systems. 

The problem of false alarms is troubling. Every alarm requires investigation 
and uses (typically human) resources. Alarms are often described in terms of 
percentages of cases examined. If there are a lot of cases, even a low alarm 
rate can require excessive resources to examine every alarm. While this is well 
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known in epidemiology (where it is called the Base-Rate Fallacy), its impact 
was not understood in the IDS community. As a result of this work, the IDS 
community is now aware that very low intrusion rates require even lower false 
alarm rates to prevent operator overload. The consequences of this observation 
inform much of the subsequent work. 

Visualizing Intrusions 
Watching the Webserver represents a tour deforce in primary data analysis as 
well as providing a beautiful example of an observational study. In many cases, 
the quantity of data available defies individual analyses. Only by clustering and 
abstraction can the data be reduced to manageable size. 

Most researchers in this area are more interested in their algorithms than in 
the data. In this work the analysis is properly viewed as a means to understand­
ing the processes that produced the data. While the way the log reduction and 
visualization were performed are significant contributions, some of the obser­
vations in the discussion have the potential to be even more significant as they 
provide a possible basis for defining a necessary property of certain intrusions. 

Combining a Bayesian Classifier with Visualization 
Understanding the IDS is an often overlooked aspect of research in this field. 
Much of the current work in intrusion detection involves machine learning. 
Even using carefully labeled data, classifiers often learn the right thing for the 
wrong reasons. As far as I know, the approach here of using visualization with 
interactive classification during the learning phase as an aid to understanding 
both the data and the detector, is unique. 

While the simple Bayesian detector used in the study is not particularly 
strong as an IDS, the training approach can be extended to other detectors and 
the results are impressive for the detector involved. This work is significant in 
its own right, however, it also sets forth a significant agenda of future work. 

Visualizing the Inner Workings of a Self Learning Classifier 
Following the previous work with a more complex learning system is logical 
next step. The detector used in this study is much more complex and its op­
eration, as originally defined, opaque. Not knowing why a classifier made a 
particular classification impedes training and hampers use. 

The work performed here demonstrates, for this more complex case, that it 
is possible to develop a visualization that gives insight into both the classifier 
and the data allowing the "why" to be understood. As in the previous case, 
the insights into the reasons why the detectors function as they do on the data 
provides insight into the intrusive behavior. 
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Visualization for Intrusion Detection 
Hooking the Worm is an interesting study of attempts to attack a small web 

server. This work takes a neutral view of the dataset involved, developing 
visual techniques for clustering and displaying web accesses. As we noted 
earlier, clustering and abstracting allow us to reduce many individual records 
to a manageable set of classes. 

In this case, reducing the records to a few essential characteristics still allow 
the production of useful patterns. The primary contribution of the work is 
a simple mechanism for providing insight into system activity in a way that 
supports classification into malicious and benign activity. 

Beyond the Monograph 
In addition to providing specific insights in a number of specific areas of in­
trusion detection, a number of less tangible contributions are made. All of the 
studies serve as exemplars of the utility of observational studies in computer se­
curity. The astute reader will see that the work has benefited from deep thought 
into the activities manifest in the data and tools studied. The resulting insights 
are carefully and clearly set forth. 

The works also show that there is no easy substitute for primary data collec­
tion and analysis. Researchers who expect to have data sets handed to them, 
should take note that significant results require hard and tedious work. In many 
other fields, primary data collection and data management may consume as 
much as 90% of a project's budget. There is no reason to expect observational 
studies in computer security to be different. 

In summary, this is work to be emulated by researchers as well as students. It 
has been a great pleasure to correspond with Stefan Axelsson as he performed 
the studies leading to the thesis this monograph is based on, and it is a pleasure 
to be able to introduce the work to the readers of this monograph. 

John MCHugh 
Canada Research Chair 
Director, Privacy and Security Laboratory 
Dalhousie University 
Halifax, Nova Scotia, Canada 
July 2005 



Preface 

With the ever increasing use of computers for critical systems, computer se­
curity, the protection of data and computer systems from intentional, malicious 
intervention, is attracting much attention. Among the methods for defense, 
intrusion detection, i.e. the application of a tool to help the operator identify 
ongoing or already perpetrated attacks, has been the subject of considerable 
research in the past ten years. A key problem with current intrusion detection 
systems is the high number of false alarms they produce. This book presents 
research into why false alarms are and will remain a problem, and proposes 
to apply results from the field of information visualization to the problem of 
intrusion detection. This approach promises to enable the operator to correctly 
identify false (and true) alarms, and also aid the operator in identifying other 
operational characteristics of intrusion detection systems. Four different vi­
sualization approaches are presented, mainly applied to data from web server 
access logs. The four approaches studied can be divided into direct and indirect 
methods. In the direct approaches the system puts the onus of identifying the 
malicious access requests on the operator by way of the visualization. For the 
indirect approaches the state of two self learning automated intrusion detection 
systems are visualized to enable the operator to examine their inner workings. 
The aim here being to provide the operator with an understanding of how the 
intrusion detections systems operate and whether that level of operation, and the 
quality of the output, is satisfactory. Several experiments were performed and 
many different attacks in web access data from publicly available web servers 
were found. The visualization helped the operator either detect the attacks her­
self and more importantly the false alarms. 

Website 
A website for the book can be found at "www.cs.chalmers.serdaveA/isBook". 
Most importantly the website contains the more detailed figures from the book, 
in full size and color. 

http://www.cs.chalmers.serdaveA/isBook
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Chapter 1 

INTRODUCTION 

All science is either physics or stamp collecting. 
Ernest Rutherford (1871-1937) 

1. Context 
In the early days of electronic computing, computer security was primarily 

of interest in military circles. With the emergence of the Internet as a household 
concept, computer security has become a universal concern. The general pub­
lic has grown accustomed to hearing about the exploits of hackers and credit 
card fraudsters on the evening news, and many have first-hand experience of 
phishers, viruses, worms and the like. And as our dependence on computer 
infrastructure increases, so do the financial and political incentives to exploit 
security vulnerabilities. The computer crimes of yesterday, most of which were 
little more than pranks, have come of age with the realization that there are huge 
sums up for grabs for the enterprising criminal with a technological knack. 

To counter these threats, engineering practices improve to become more se­
curity aware, and security research develops new methods for the construction 
of secure systems. So we might hope to reduce security flaws and vulnerabili­
ties. But at the same time our systems are becoming ever more complex, so it 
is clear that security vulnerabilities are here to stay. Thus our security defenses 
must include mechanisms for dealing with and learning from security failures. 

This book presents research into one principle of protecting valuable com­
puter resources: surveillance, using information visualization to aid the opera­
tor in understanding the security state of the monitored system, either directly 
or indirectly, by providing insight into the operation of some intrusion detection 
system. 



2 Introduction 

We continue this introductory chapter with a brief look at what we mean by 
computer security, saving a more complete overview of intrusion prevention 
and detection to Chapter 2. 

We then present our rationale for applying the principle of information visual­
ization to intrusion detection, together with a short introduction to visualization. 

2. Computer Security 
The computer security field is primarily concerned with protecting one par­

ticular resource: data. 
The value of data can be compromised in three ways, commonly referred to 

as the CIA of computer security [CEC91]. 

1 Confidentiality Prevention of the unauthorized disclosure of information. 

The value of much data relies on it being kept secret from prying eyes. 
Violating this secrecy thus entails a breach of confidentiality. 

2 Integrity Prevention of the unauthorized modification of information. 

In some circumstances we may not be particular about the secrecy of our 
data, but it remains absolutely crucial that the data not be tampered with. We 
require a high level of trust in the accuracy of our data, i.e. for its integrity 
to remain unquestioned. 

3 Availability Prevention of the unauthorized withholding of information or 
resources. 

Our data should be available to us when, where and in the form we need it. 
Data that is confidential and has the highest integrity will be of no use to us 
if we cannot process it when the need arises. Thus it is imperative that our 
data remains available to us at our convenience. 

An increasingly relevant fourth factor is sometimes added [Mea93, Jon98]: 

4 No unauthorized use, viz. that no unauthorized person should be allowed to 
use the computing resource, even though such use in itself might not violate 
any of the CIA requirements. 

From a risk management perspective, it is easy see that such a person would 
probably end up in a position from which further violations were possible -
including the use of our computing resources to violate the CIA requirements 
of other systems, for example through participation in a distributed denial of 
service attack. 

Different owners of data make different decisions about the relative impor­
tance of these factors. Three hypothetical scenarios will suffice as examples. 
The first is that of a military entity, paranoid about confidentiality to the point 
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that it would rather blow up its own computer installations then let them fall 
intact into the hands of the enemy. Integrity and availability play less of a role 
in such a decision. The second is that of a bank. Although it is anxious that in­
formation might leak into the wrong hands, it is more concerned with integrity. 
That someone can learn the balance of an account is less of a concern than the 
risk that someone could alter it, perhaps by adding a zero to the end. The third 
is a relatively new and is that of an internet merchant who is mostly concerned 
with the continued availability of her website as while she can tolerate the odd 
leaked credit card number of one of her customers, she cannot tolerate having 
her business shut down for any appreciable amount of time. The latter scenario 
has become increasingly important in the last few years. 

Many security measures can be employed to defend against computer intru­
sions and other unauthorized tampering with protected resources, the establish­
ment of a strong perimeter defense being only one possible measure. Another 
method well established in the traditional security field is that of an intrusion 
alarm coupled with a security response. A great deal of research has recently 
gone into the idea of automated intrusion alarm for computer systems, a so-
called intrusion detection system, or IDS for short. We postpone a detailed 
overview of intrusion detection until Chapter 2. 

3. Rationale and Problem Statement 
A significant problem with intrusion detection systems - one which we fo­

cus on in Chapter 3 - is the high number of false alarms. -It has long been 
known in security circles that ordinary electronic alarm systems should be cir­
cumvented during the normal operation of the facility, when supervisory staff 
are more likely to be lax because they are accustomed to false alarms [Pie48]. 
By analogy, burglar alarms operate under a very restricted security policy: any 
activity whatsoever on the premises is suspicious. Intrusion detection systems 
on the other hand are active when the computer system is in full operation, 
when most activity is benign. In the shop lifting scenario however, an ordinary 
burglar alarm would not be appropriate since there would be a multitude of nor­
mal, benign activity (the shopkeeper even encouraging this). The shoplifting 
problem is currently addressed among other things by surveillance, i.e. human 
supervision of the potential shoplifters. The human, using her senses unaided, 
is too expensive to employ directly, and therefore technology is brought to bear 
in the form of video cameras, video recorders, etc. 

Taking the analogy with surveillance more literally leads us to the central idea 
of this book: the use of some form of information visualization to the intrusion 
detection problem. The work presented in this volume explores the use of 
simple techniques from the visualization field as means to aide the surveillance 
of computer systems. 
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Our methods are not aimed at the naive user however. The operator of any 
intrusion detection system must have a rudimentary understanding of the assets 
that need protection and common ways of attacking said assets. To assume 
otherwise would be akin to airport security staff knowing nothing the dangers 
of different types of firearms and sharp implements, and being oblivious to 
the most common methods of evading detection. A metal detector, however 
sophisticated, would not be of much use in such a situation, as the operator 
would not be able to evaluate the output. That is not to say that the staff 
necessarily would need to know how to build a metal detector. We aim for the 
same level of sophistication of the users of our tools. 

Thus the main point of the investigation outlined in this book is as follows: 
given that false alarms are a problem with current approaches to intrusion detec­
tion: in what ways can information visualization be utilized to aid the operator 
in identifying false alarms? 

4. Information Visualization 
We briefly mention some of the basic concepts in the field of information visu­

alization. The visualization techniques employed in this work are all fairly sim­
ple, and build on well-known ideas. Good introductions to this area are [SpeOl] 
and [CMS99]. This section borrows heavily from the latter. 

The human mind's cognitive skills are limited. By cognition we mean "The 
acquisition or use of knowledge" [CMS99, p. 6]. To overcome the shortcomings 
of our limited cognitive skills, humans have invented external aids that help us 
in cognitive tasks. These aids are often in graphical form (c.f. doing longhand 
arithmetic using pencil and paper, where we aid limited short term memory by 
keeping intermediate results as glyphs on paper). The use of the external world 
in the aid in cognitive tasks is sometimes called "external cognition" [CMS 99, 
p. 1]. The use of external aid is central to the effective utilization of the limited 
cognitive skills of the human: 

. . . visual artifacts aid though; in fact, they are completely entwined with cognitive 
action. The progress of civilization can be read in the invention of visual artifacts, 
from writing to mathematics, to maps to printing to diagrams, to visual computing. 
As Norman says, "The real powers come from devising external aids that enhance 
cognitive abilities." Information visualization is about just that—exploiting the dynamic, 
interactive, inexpensive medium of graphical computers to device new external aids 
enhancing cognitive abilities. It seems obvious that it can be done. It is clear that the 
visual artifacts . . . have profound effects on peoples' abilities to assimilate information, 
to compute with it, to understand it, to create new knowledge. Visual artifacts and 
computers do for the minds what cars do for the feet or steam shovels do for the hands. 
But it remains to puzzle out through cycles of system building and analysis how to build 
net next generation of such artifacts. (Card et. al. [CMS99, pp. 5-6]). 

Information visualization then is the use of computers to give abstract data 
an interactive visual form. By abstract we mean that the data is non-physical 
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in origin. One such origin of data that we deal with exclusively in this is log 
data from computer systems, especially access log data from webservers. 

The information visualization process can be divided into three distinct steps: 

Data transformations map Raw Data, that is data in some idiosyncratic format into 
Data Tables, relational descriptions of data extended to include metadata. 

Visual mappings transform Data Tables into Visual Structures, structures that combine 
spatial substrates, marks, and graphical properties. Finally, 

View transformations create Views of the Visual Structure by specifying graphical 
parameters such as position, scaling, and clipping. 

User interaction controls parameters of these transformations, restricting the view to 
certain data ranges, for example, or changing the nature of the transformation. The vi­
sualizations and their controls are used in the service of some task. (Card et. al. [CMS99, 
p. 17]). 

As a research area, information visualization is now some twenty years old 
(even though the visual presentation of data of course is much older) with 
rapid development in the last ten years or so due to the advent of cheap per­
sonal computers with substantial processing and graphics capabilities. This 
thesis follows one trend in the visualization area, away from pure information 
visualization studies with its goals of developing new generally applicable visu­
alization strategies, towards application of the principles developed in the past 
to new problem domains. 

5. Overview of the book 
The theme for this book can be viewed ^s false alarm suppression, i.e. how 

do we make the system as a whole (including the operator) able to handle false 
alarms? After a brief introduction to the topic of intrusion detection in Chapter 
2, the third chapter provides a key piece of motivation for the main topic of 
this book: it shows why false alarms are, and will always be, a problem, by 
explaining the issue of false alarms using the base-rate fallacy. The following 
chapters investigate the application of information visualization to the intru­
sion detection problem and how this helps the operator more easily identify 
false alarms (and detect true alarms). First the visualization of the output of an 
anomaly detection system—applied to unique web access request strings—is 
studied in Chapter 4. This study is successful but has drawbacks which are ad­
dressed in the following two chapters (Chapter 5 and Chapter 6) which develop 
successively more complex directed self learning detectors with integrated vi­
sualization to enable the operator to detect false (and true) alarms but also to 
see a visual representation of the training process, and interactively alter it. The 
last chapter (Chapter 7) then picks up where the previous left off by presenting 
a method for correlation of malicious web access request strings once they have 
been detected (by the previous methods for example) so that the operator may 
identify the entities making the requests. 
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We conclude this introduction with a more detailed overview of the Chapters. 

Chapter 2: An Introduction to Intrusion Detection 
The reader unfamiliar with the area of computer security and intrusion detection 
in particular will find an introduction to the area. The Chapter covers some basic 
terminology and concepts in the area of intrusion prevention and detection, and 
presents the typical architecture of an intrusion detection system. 

Chapter 3: The Base-Rate Fallacy and the Difficulty of Intru­
sion Detection 
Many different demands can be made of an intrusion detection system. An 
important requirement is that it be effective, in other words that it should detect 
a substantial percentage of intrusions into the supervised system while still 
keeping the false alarm rate at an acceptable level. 

This chapter demonstrates that intrusion detection in a realistic setting is 
perhaps harder than previously thought. This is due to the base-rate fallacy 
problem, because of which the factor limiting the performance of an intrusion 
detection system is not the ability to identify intrusive behaviour correctly, but 
rather its ability to suppress false alarms. A very high standard, less than 
1/100000 false alarms per 'event' given the stated set of circumstances, has to 
be reached for the intrusion detection system to live up to these expectations as 
far as effectiveness is concerned. The cited studies of intrusion detector perfor­
mance that were plotted and compared indicate that anomaly-based methods 
may have a long way to go before they can reach these standards because their 
false alarm rates are several orders of magnitude larger than what is required. 
Turning to the case of signature based detection methods the picture is less 
clear. One detector performs well in one study—and meets expectations—^but 
is much less convincing in another, where it performs on a par with the anomaly-
based methods studied. Whether some of the more difficult demands, such as 
the detection of masqueraders or the detection of novel intrusions, can be met 
without the use of anomaly-based intrusion detection is still an open question. 

It should be noted that the assumptions made above hinge on the operator's 
ability to deal with false alarms. Studies in psychology indicate that humans 
are typically ill equipped to effectively supervise complex systems in an envi­
ronment where the monitoring systems produce alarms that turn out not to be 
real causes for concern [RDL87, WH99]. These result indicate that the more 
complex the system, and the less the human feels aware of how the system 
is operating (i.e. to what degree it seems 'automagical') the less effective the 
operator becomes in correctly identifying problematic situations and taking the 
necessary corrective action. The results seem remarkably stable regardless of 
the type of system under study, whether in the process industry (paper mill, steel 
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mill, aluminum smelting facility etc.) [RDL87], or air craft cockpit or nuclear 
power plant control room [WH99]. 

Thus it is reasonable to assume that if we cannot reduce the false alarm 
rate of current intrusion detection systems, it would be beneficial to provide the 
operator with tools to help her address them, i.e. by identifying them, discarding 
them, and ultimately correcting the intrusion detection system that produced 
them. This will in effect provide the operator with more insight into how the 
intrusion detection system is operating. Thus Chapter 3 provides the rationale 
for addressing the false alarm problem. 

5.1 Chapter 4: Visualizing Intrusions: Watching the 
Webserver 

Following the rationale in the previous chapter, applying visualization to the 
output of a traditional anomaly based intrusion detection system could help the 
operator make sense of the output. The aim is to help the operator differentiate 
false alarms from the true alarms. This could combine advantages of both 
methods while mitigating their drawbacks, namely: 

Anomaly detection advantage: being able to detect novel intrusions, i.e. previ­
ously undetected and unknown methods of intrusion; disadvantages: having 
a high false alarm rate as consequence of detecting unusual behavior instead 
of just known violations. 

Visualization advantage: increasing the operator's insight into the data be­
ing presented; disadvantage: not being able to display the typically large 
amounts of data that intrusion detection systems deal with in a meaningful 
way. 

To this end, we describe how a very simple anomaly detection based log reduc­
tion system with a 3D visualization component was applied to the realistically 
sized log of a web server. The log was from the month of November of 2002 and 
came from the webserver of the Computer Science Department at Chalmers. 
It contained around 1.2 million accesses, comprised of about 220000 unique 
access requests. 

We describe an anomaly based log reduction scheme which works by cutting 
up the unique requests into elements as per the HTTP specification, and then 
counting the frequencies of occurrences of the elements, assigning a score to 
the request as a whole by calculating the average of the element scores. A low 
score signifies that the request was comprised of unusual elements, and hence 
anomalous in some sense. It should be noted that the element frequencies were 
maximized at a frequency of 1000, so as to prevent a small set very frequent 
elements from completely dominating the score of those access requests of 
which they were part. The cut-off score was motivated visually. When applying 
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an anomaly based intrusion detection system it would be typical to settle on a 
threshold score and to mark all the requests with a lower score as anomalous. 
However, instead we choose as many of the lowest scoring access requests as 
we can handle with the visualization component, irrespective of their score. So 
strictly speaking we in fact implement an anomaly detection based log reduction 
scheme. 

The visualization component then performed the same separation into ele­
ments as the log reducer, but instead visualized the elements as a general graph, 
with directed edges connecting the elements. I.e. given an access request such as 
"GET /index.html HTTP/1.0", it would first be cut up into the nodes: "GET", 
"index.html", "HTTP" and "1.0", and then the edges between "GET" and 
"index.html" etc. would be added. Note that the resulting graph is a general 
graph (e.g. not necessarily acyclic etc.), where a node may be a part of several 
access requests at different places. The resulting (mostly treelike) structure was 
visualized as a 3D graph and even while the first feature that stood out turned 
out to be an attack, later investigation indicated that the visualization was better 
suited to help identify benign requests than malicious requests. This was just as 
well, as the majority of the log was comprised of benign access requests. Even 
though a direct comparison between the false alarm rates defined in Chapter 3 
and the results in this chapter was impossible, the false alarm rate was orders 
of magnitude worse than required in Chapter 3 but the visualization component 
was effective in helping the operator identifying the false alarms and hence by 
a process of elimination, the true alarms. 

Many interesting attempted intrusions were found in the data and were di­
vided into some seven classes. While the log reduction scheme did not have 
a perfect detection rate, it did not miss any one class completely, so evidence 
of all types of attacks was preserved. To ascertain the detection rate, all the 
220000 access requests were classified by hand, an extremely tedious task. 

Chapter 5: Combining a Bayesian Classifier with Visualiza­
tion: Understanding the IDS 
While the method that is presented in Chapter 4 is workable it does have some 
drawbacks. The main drawback pertains to the log reduction scheme. While 
it works as it stands, it does so without lending the user any real insight into 
its operation, the graphs motivating the cut off frequencies notwithstanding. 
Furthermore, it cannot be configured by the user, should e.g. the visualization 
component have given any insight into how its performance could be improved. 
Also it is a pure anomaly based system and (as we discuss in Section 2.4) for 
better detection accuracy an intrusion detection system ought to have a model 
of both benign and malicious behavior. 

An anecdote from the chapter serves to motivate the approach taken: 
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When the author first started using the Bayesian spam filter recently added to the 
Mozilla ("http://www.mozilla.org") email client, the filter seemed to learn the difference 
between spam and non-spam email with surprisingly little training. It was not until some 
rather important email was misclassified as 'spam' that it was realized that what the filter 
had actually learnt, was not the difference between spam and non-spam, but between 
messages written in English and the author's native tongue. In fairness given a few more 
benign examples of English messages the system was successfully retrained and was 
again correctly classifying email, but some rudimentary insight into exactly what the 
system had learnt would have made us more skeptical of the quality of the classification, 
even though the classifier seemed to operate perfectly judging by the output. 

To attempt to address this situation, a naive Bayesian classifier was devel­
oped. It was modeled after the now common spam filters first popularized by 
Paul Graham [Gra02]. The main reasons for this choice was that these clas­
sifiers have had some success in the similar field of spam detection and they 
also meet the requirement that they build a complete model given the available 
evidence, taking both benign and malicious clues into account. In fact the clas­
sifier cannot operate without both benign and malicious examples. In order to 
explain how the visualization of the classifier works we will first have to go 
into a bit more detail explaining how the classifier actually operates. Naive 
Bayesian classification revolves around a scenario where that which we wish to 
classify can be divided into records (i.e. pieces of mail in the case of spam clas­
sification) that can be marked as benign or malicious as a whole. The records 
must furthermore be divisible into tokens (typically words in the case of spam 
classification, but also message headers etc). Bootstrapping the classifier con­
sist of feeding it records the user has marked as either benign or malicious. The 
principle behind the classifier is thus one of directed self learning. In more 
detail, the classifier operates by counting the frequencies of occurrence of the 
tokens that makes up the good and bad records. The frequency counts for each 
token can be interpreted (by the application of some conversion formula) as a 
probability indicating the relative maliciousness of the token, i.e. the probability 
that the token indicates a bad context. Let us call this probability Pi (for local 
probability). The probability that the same token is indicative of a good record 
is then of course simply I — Pi. In order to classify a previously unseen record 
the classifier weighs together the evidence provided by the local probabilities 
of the tokens that makes up the record, using a neutral 0.5 probability if the 
token has not been seen previously. This result in a total probability for the 
record as a whole that can be interpreted analogously with the local probability. 
The weighing is performed by a naive version of the Bayesian chain rule. As 
the local probabilities do not actually take the dependent probabilities of the 
other tokens into account (as that would lead to a state explosion that would be 
prohibitively costly in terms of memory and processing resources) the classi­
fier earns the moniker naive. It is also worth noting that in order for Bayes's 

http://www.mozilla.org
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theorem to hold the probabilities taken into account ought to be independent of 
each other. This restriction is often relaxed in practice. 

Given this classifier, one realizes that the learning it does is condensed into 
the local probabilities. Therefore it was decided to try the heatmap visualization 
principle. The heatmap visualization works by mapping a continuous variable 
onto the color wheel. From green via yellow, to red. In this case we map local 
probability from 0.0 being green to 1.0 being red, with 0.5 indicated by yellow 
onto the background of the textual representation of the tokens. This provides 
the operator visual insight into the evidence upon which the classifier is basing 
its conclusion. In the prototype developed, the records are displayed one to a 
line with the total score also displayed (heatmapped) to the left of the record. 
As the resulting visualization can also lend insight into the training process 
and not merely the output of the classifier once it is trained, a natural step is 
to make it interactive. The user can mark a record benign or malicious and 
immediately see the effect this update has on the classifier as a whole through 
the visualization of the record and other records also visible. To help the user 
keep track of the training status of the record, a colored marker is placed first 
on the line to indicate whether this record has been trained as "good" or "bad" 
(or not part of training at all). In order to aid in training, the operator can sort 
the display according to training status e.g. to easily identify records that have 
been trained but still are misclassified. To effect actual detection the operator 
can import new records and sort on total score, which will single out the records 
most likely to be indicative of maUcious activity. 

In order to test the complete prototype, named Bayesvis, it was trained on 
the web server access request data described in Chapter 4. A training strategy 
of train until no false positives was adopted, i.e. the system was first trained on 
all the previously identified malicious requests and then enough of the benign 
requests were trained to make all the benign training request have an overall 
score lower than 0.5, signifying that they are benign. The resulting classifier 
was then tested on the available logs from the same web server for the months 
following November, i.e. December through February. While the December log 
contained on the order of the same number of access requests, many of these 
were identical to the November log and were removed from it. The same applied 
for the following logs, i.e. many of the requests in the January log were identical 
to requests seen in either the November or December logs. Thus the actual logs 
the classifier was tested on decreased in size as the experiment wore on. The 
results were promising, the number of false alarms was reasonable and because 
of the visualization they were quite easily identifiable, as the operator could 
(the author would argue) see what tokens the classifier found objectionable. An 
access request consisting of predominantly green tokens with one or two red 
mixed in (perhaps as arguments to cgi scripts) would almost certainly indicate a 
false alarm. As the operator has knowledge of the meaning of the actual tokens 
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in context (something the classifier itself is devoid of) she is poised to make a 
qualitative evaluation of the output of the classifier. The detection capabilities 
were also sufficient: the detector clearly managed to generalize its evidence 
from the training session to detect variations of previously known attacks. 

Chapter 6: Visualizing the Inner Workings of a Self Learn­
ing Classifier: Improving the Usability of Intrusion Detection 
Systems 

A problem with the classifier described in Chapter 5 is that it is simple (simplistic 
even) in that it neither takes the order nor the context of the tokens into account. 
While in fairness the naive Bayesian classifier shows sufficient performance on 
the data with which it was tested, there is data on which it cannot be tested given 
the above mentioned limitations. Furthermore, as it did not perform flawlessly 
there is room for improvement. 

In order to address these two points a more complex classifier based on 
two popular spam filters: CRM-114 [Yer04] and Spambayes [MW04] was 
developed. Our classifier works with the same notions of tokens, records, 
directed training etc. as the naive Bayesian classifier in Chapter 5. It works by 
sliding a window of length six over the input and considering as features all the 
possible subsequences of the tokens in the window considering skips, i.e. the 
order of the tokens is preserved, but they may not be counted as present. E.g. 
the window "The quick brown fox jumps over", gives rise to (among others) 
the features "The <skip> <skip> fox jumps over" and "<skip> quick brown 
fox jumps over", etc. until all possible subsequences have been generated. 
These features are first processed much as the tokens are in the naive Bayesian 
classifier, i.e. their presence in benign and malicious contexts are counted and 
the statistics allowed to influence a local probability. In this case the formula 
of the local probability is more sophisticated, giving less weight to features 
for which low counts have been observed (i.e. for which there is less total 
evidence). However, as this would give equal weight to features that have many 
tokens present (i.e. few skips) as to features that have fewer tokens present, a 
superincreasing weight function is applied that modifies the local probabilities 
according to the formula: W = l/2^(^~^\ I.e. a feature with more tokens 
present can outweigh all of its "children"—i.e. with skips in the positions that 
the feature has tokens—combined. This is believed to make the classifier non­
linear i.e. a classifier that could e.g. learn that 'A' and 'B' in isolation were 
both indicative of a malicious context, but 'AB' together was indicative of a 
good context, something the naive Bayesian classifier could not. Further study 
is required to confirm whether this scheme could indeed lead to a classifier that 
is non-linear. So far our classifier has been solely influenced by the CRM-114 
classifier. 
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Given the local probabilities they have to be combined into an overall score 
indicating the probability the record is indicative of malicious activity much as 
in Chapter 5. As in the SpamBayes classifier, to accomplish this a chi square test 
(or rather two tests) was applied to the local probabilities. The local probabilities 
of the features are tested against the two hypotheses of them being indications 
of benign or malicious behaviour, thus resulting in two probabilities. These are 
then combined into one probability, taking the support for both hypotheses into 
account. For the situations where there is either strong evidence of malicious 
activity and none of benign (or vice versa) the situation is straightforward giving 
rise to the probability of either 1.0 or 0.0 respectively. The situation where we 
do not have much evidence of either gives rise to the overall score of 0.5. The 
special case where we have equal evidence of both malicious and benign activity 
is interesting though, as that must also give rise to the overall score of 0.5, but 
of course still being a very different situation from the case where we do not 
have much evidence of either kind. As a result, all three probabilities of the 
classifier are returned to the application for visualization. 

Visualizing this classifier is much more problematic than the naive Bayesian 
classifier as there are many more features and a more complex decision pro­
cess to take into account. Since we still deal with probabilities, some form of 
heatmap could still be applied. But now no single token has a score, and the 
simple line per record display of Bayesvis cannot be applied directly. Thus 
it was decided to apply the principle of overview and detail, whereby the data 
is displayed in progressively more detail as the user selects various regions of 
interest. 

In order to evaluate the resulting prototype, called Chi2vis, it was trained on 
and applied to the November 2002 log as that had been fully evaluated for benign 
and malicious accesses. As is customary in classifier research, the system was 
trained on a randomly chosen ten percent subset from the seven classes of attacks 
(though at minimum one request) and the benign requests. The classifier was 
then evaluated on the remaining data for true and false positives and negatives. 
The resulting detector faired well, and the visualization helped the operator 
identify false alarms, more so than Bayesvis, in that Chi2vis lets the operator see 
the (limited) context in which the training took place so that the operator gained 
extra insight into what the detector found objectionable and why that may not 
hold in the particular case. Chi2vis was also tested on traces of operating system 
calls. Unfortunately there was really not enough data available to train Chi2vis 
sufficiently but it still managed to correctly detect at least some (visually very 
uninteresting) bad traces, even though the performance of Chi2vis on this data 
set was not spectacular. To complete the evaluation, Bayesvis was then tested 
under the same circumstances to make a comparison possible. While Bayesvis 
required less benign training before the train until no false positives strategy 
was fulfilled, this was reflected in a higher false alarm rate and lower detection 
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rate. Bayesvis faired almost universally worse on all aspects in comparison to 
Chi2vis. 

Chapter?: Visualization for Intrusion Detection: Hooking the 
worm. 
This chapter is based on our first foray in the field of applying visualization to 
intrusion detection[Axe03]. Access requests (in this case the complete records, 
not just the unique request strings) to a small personal web server are studied 
with a visualization method called the parallel coordinate plot [Ins97]. The 
hypothesis here is that the operator should be able to detect malicious accesses 
to the webserver—most notably from the various worms that bounce around the 
internet—and be able to correlate them to each other. It should be noted that the 
web server in this case was much smaller than the ones studied in the previously 
summarized chapters, and did not have nearly the same number of accesses to it. 
It furthermore did not have much in the way of benign access requests. Further 
complicating the study of this web server, it used authentication for all accesses 
and hence all worms trying to access it got an error return. To accomplish 
the detection and classification of the worms (and other entities) that accessed 
the server, a selection of variables that did not leak information (directly or 
indirectly) about the authentication process was visualized using the parallel 
coordinate plot. The parallel coordinate plot maps a point in multidimensional 
space onto the plane by placing all the axes vertically and equidistant and 
plotting the components of the point onto each respective axis, connecting the 
components with straight line segments. The detection and identification was 
achieved via a trellis plot, i.e. one of the variables (the unique access request 
string as in the previous chapters) was held constant and a separate parallel 
coordinate plot generated for each unique access request. This meant that 
the patterns of access for the various unique request strings could be visually 
correlated to each other, i.e. entities making different requests but at similar 
times, from similar systems etc. could be identified and the access requests 
correlated. 

Relatively little support for the hypothesis that malicious entities could be 
detected was found. While many of the worms showed markedly different 
access patterns from the benign patterns it is difficult to say how that would 
hold up given a larger web site with more benign traffic. The malicious access 
requests (and the benign) could be successfully correlated to each other though. 
In fact, one entity making access requests very similar to then popular worms 
was markedly different visually and turned out to be a then largely unknown 
instance of the application of a tool for breaking into web sites. Most security 
sources erroneously referred to this access request as coming from the worm. 
The visualization made it easy to differentiate this access pattern from the 
others. Several other malicious access patterns were found. As the previous 
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work that dealt with web access requests stopped when the types of malicious 
accesses were found the method investigated in this work nicely complements 
those methods in that with the approach presented here the investigation could 
continue and the actual entities making the request could be identified. 

However, in the version of paper on which the chapter is based, one malicious 
pattern slipped by. This was because the pattern consisted of two separate 
unique access request strings and only a few accesses overall and was therefore 
similar to the benign traffic to the web server. This pattern turned out to be from 
the same tool as mentioned in the previous paragraph, but run with different 
options. The reason for this pattern escaping the author the first time around 
is illustrative as it makes the main drawback of all visualization work clear: 
any visualization can only be as successful as the person viewing it. If that 
person falters thorough inattentiveness (perhaps brought on by tiredness, stress 
or boredom for example) then the visualization cannot ameliorate the situation. 
Putting the human operator back into the driver's seat, so to speak, has both the 
benefit of putting the human in control of the events, but also the drawback of 
having to come to terms with human fallibility. 



Chapter 2 

AN INTRODUCTION TO 
INTRUSION DETECTION 

1. Intrusion Prevention 
Several methods are available to protect a computer system or network from 

attack. A good introduction to such methods is [HB95], from which this section 
borrows heavily. The paper lists six general, non-exclusive approaches to anti-
intrusion techniques: pre-emption, prevention, deterrence, detection deflection, 
and countermeasures (see Figure 2.1): 

System perimiter 

Figure 2.1. Anti-intrusion techniques (from [HB95]) 

1 Pre-emption To strike against the threat before it has had a chance to mount 
its attack, in the spirit of: "Do unto others, before they do unto you." In a 
civilian setting, this is a dangerous and possibly unlawful approach, where 
innocent—and indeed not so innocent—bystanders may be harmed. 
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2 Prevention To preclude or severely limit the likelihood of a particular in­
trusion succeeding. One can, for example, elect to not be connected to the 
Internet if one is afraid of being attacked by that route, or choose to be 
connected via some restriction mechanism such as a firewall. Proving your 
software free of security defects also falls under this heading. Unfortunately, 
this can be an expensive and awkward approach, since it is easy to throw 
the baby out with the bath water in the attempt to prevent attacks. Inter­
nal prevention comes under the control of the system owner, while external 
prevention takes place in the environment surrounding the system, such as 
a larger organization, or society as a whole. 

3 Deterrence To persuade an attacker to hold off his attack, or to break off an 
ongoing attack. Typically this is accomplished by increasing the perceived 
risk of negative consequences for the attacker. Of course, if the value of the 
protected resource is great, the determined attacker may not be scared off 
so easily. Internal deterrence can take the form of login banners warning 
potential internal and external attackers of dire consequences should they 
proceed. External deterrence could be effected by the legal system, with 
laws against computer crime and the strict enforcement of the same. 

4 Detection To identify intrusion attempts, so that the proper response can be 
evoked. This most often takes the form of notifying the proper authority. 
The problems are obvious: the difficulty of defending against a hit-and-run 
attack, and the problem of false alarms, or failing to sound the alarm when 
someone surreptitiously gains, or attempts to gain, access. 

5 Deflection To lure an intruder into thinking that he has succeeded when in 
fact he has been herded away from areas where he could do real damage. 
The main problem is that of managing to fool an experienced attacker, at 
least for a sufficient period of time. 

6 Countermeasures To counter actively and autonomously an intrusion while 
it is in progress. This can be done without the need for detection, since the 
countermeasure does not have to discriminate—although it is preferable if 
it can—^between a legitimate user who makes a mistake and an intruder who 
sets off a predetermined response, or "booby trap". 

The reasons for our desire to employ the principle of surveillance are much 
the same as in the physical security arena: we wish to deploy a defence in depth; 
we do not believe in the infallibility of the perimeter defence; when someone 
manages to slip through or even attempts to attack we do not want them to have 
undetected free reign of the system; for technical reasons we perhaps cannot 
strengthen our perimeter defences (lack of source code etc.); we wish to defend 
not only against outsiders, but also against insiders, those that already operate 
within the perimeter, etc. 



Intrusion Detection 17 

2. Intrusion Detection 
As the principle of surveillance stems from the application of intrusion de­

tection systems to computer security it is fitting to start with a few definitions 
and introduction to that area of study. Research in intrusion detection is the 
study of systems that automatically detect intrusions into computer systems. 
They are designed to detect computer security violations made by the follow­
ing important types of attackers: 

• Attackers using prepackaged exploit scripts. Primarily outsiders. 

• Automated attacks originating from other computers, so called worms. 

• Attackers operating under the identity of a legitimate user, for example by 
having stolen that user's authentication information (password). Outsiders 
and insiders. 

• Insiders abusing legitimate privileges, etc. 

Giving satisfactory definitions to there terms turns out to be problematic. 
Although most computer users could easily describe what they do not want to 
happen with their computers, finding strict definitions of these actions is often 
surprisingly difficult. Furthermore, many security problems arise between the 
ordinary every day definitions that we use to communicate security, and the 
strict definitions that are necessary to research. For example the simple phrase 
"Alice speaks to Bob on the freshly authenticated channel" is very difficult to 
interpret in a packet-sending context, and indeed severe security problems have 
arisen from confusion arising from the application of such simple models such 
as "speaking" in a computer communications context [GolOO]. That numerous, 
spectacular mistakes have been made by computer security researchers and 
professionals only serves to demonstrate the difficulty of the subject. 

2.1 Definitions 
That said, a definition of what we mean by intrusion and other related terms 

remains essential, at least in the context of intrusion detection: 

Intrusion The malicious violation of a security policy (implied or otherwise) 
by an unauthorized agent. 

Intrusion detection The automated detection and alarm of any situation where 
an intrusion has taken, or is about to take place. (The detection must be 
complemented with an alert to the proper authority if it is to act as a useful 
security measure.) 

We will consider these definitions in greater detail in the following para­
graphs: 
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Malicious. The person who breaks into or otherwise unduly influences our 
computer system is deemed not have our best interests at heart. This is an 
interesting point, for in general it is impossible for the intrusion detection system 
to decide whether the agent of the security violation has malicious intent or not, 
even after the fact. Thus we may expect the intrusion detection system to raise 
the alarm whenever there is sufficient evidence of an activity that could be 
motivated by malice. By this definition this will result in a false alarm, but in 
most cases a benign one, since most people do not mind the alarm being raised 
about a potentially dangerous situation that has arisen from human error rather 
than malicious activity. 

Security Policy. This stresses that the violations against which we wish to 
protect are, to a large extent, in the eyes of the owner of the resource being 
protected (in western law at least). Other legitimate demands on security may 
in future be made by the state legislature. Some branches of the armed services 
are already under such obligations, but in the civilian sector few (if any) such 
demands are currently made. In practice security policies are often weak, 
however, and in a civilian setting we often do not know what to classify as 
a violation until after the fact. Thus it is beneficial if our intrusion detection 
system can operate in circumstances where the security policy is weakly defined, 
or even non-existent. One way of circumventing this inherent problem is for 
the supplier of the intrusion detection system to define a de facto security policy 
that contains elements with which she hopes all users of her system will agree. 
This situation may be compared with the law of the land, only a true subset of 
which is agreed by most citizens to define real criminal acts. It goes without 
saying that a proper security policy is preferable. This ought to be defined as 
the set of actions (or rather principles) of operation that are allowed, instead of 
in the negative for best security. 

Unauthorized Agent. The definition is framed to address the threat that comes 
from an unauthorized agent, and should not be interpreted too narrowly. The 
term singles out all those who are not legitimate owners of the system, i.e., who 
are not allowed to make decisions that affect the security policy. This does not 
specifically exclude insiders i.e. people who are authorized to use the system to 
a greater or lesser extent, but not authorized to perform all possible actions. The 
point of this distinction is that we do not attempt to encompass those violations 
that would amount to protecting the owner from himself. To accomplish this 
is, of course, both simple and impossible: simple in the sense that if the owner 
makes a simple legitimate mistake, a timely warning may make him see his 
error and take corrective action; impossible, in that if the person who legally 
commands the system wishes to destroy or otherwise influence the system, there 
is no way to prevent him, short of taking control of the system away from him. 
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in which case he no longer "legally commands the system." When all is said 
and done, trust has to be placed in an entity, and our only defense against this 
trust being abused is to use risk management activities external to the intrusion 
detection system. It is a difficult question as to whether we should consider 
non-human attackers such as other computers to be agents in themselves, or 
merely tools acting on the behalf of some other agent. We will not delve more 
deeply into such questions here. 

Automated Detection and Alarm. The research into intrusion detection has 
almost exclusively considered systems that operate largely without human su­
pervision. An interesting class of systems that has not been studied to any 
significant degree (the present book excepted) are those that operate with a 
larger degree of human supervision, placing so much responsibility on the hu­
man operator that she can be thought of as the detection element proper (or at 
least a significant part of it). Such systems would support the human in ob­
serving and making decisions about the security state of the supervised system; 
a 'security camera' for computer systems. Continued reliance solely on fully 
automated systems may turn out to be less than optimal. 

Delivered to the Proper Authority. It cannot be overemphasized that the 
alarm must be delivered to the proper authority—henceforth referred to as the 
Site Security Officer or SSO—in such a manner that the SSO can take action. 
The ubiquitous car alarm today arouses little, if any, response from the public, 
and hence does not act as an effective deterrent to would-be car thieves. Thus the 
SSO's response, which may or may not be aided by automatic systems within 
the intrusion detection system itself, is a crucial component in the fielding of 
intrusion detection systems. There has been little research, even in the simpler 
field of automated alarms, into how to present information to the SSO so that 
she can make the correct decision and take the correct action. It is important that 
the authority that is expected to take corrective action in the face of computer 
security violations—keeping in mind that such violations often originate "in 
house"—really has the authority to take the appropriate action. This is not 
always the case in a civilian setting. 

Intrusion has Taken Place. The phrase "any situation where an intrusion has 
taken place" may seem self-evident. However, there are important questions 
over the exact moment when the intrusion detection system can detect the 
intrusion. It is clearly impossible in the general case to sound the alarm when 
mere intent is present. There is a better chance of raising the alarm when 
preparatory action is taking place, while the best chance comes when a bona 
fide violation has taken place, or is ongoing. The case where we consider an 
intrusion which is "about to take place" is interesting enough to warrant special 
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treatment. In military circles this falls under the heading of indication and 
warning', there are sufficient signs that something is imminent to ensure that 
our level of readiness is affected. In a computer security context, the study 
of such clues, many of which are of course not "technological" in nature, is 
not far advanced. It is an important subject, however, since it actually gives 
us the opportunity to ward off or otherwise hinder an attack. Without such 
possibilities, an alarm can only help to reduce the damage after the fact, or can 
only function as a deterrent. 

2.2 Intrusion Detection Systems 
The study of intrusion detection is today some twenty five years old. The 

possibility of automatic intrusion detection was first put forward in James 
Anderson's classic paper [AndSO], in which he states that a certain class of 
intruders—the so-called masqueraders, or intruders who operate with stolen 
identities—could probably be detected by their departures from the set norm 
for the original user. Later the idea of checking all activities against a set 
security policy was introduced. 

We can group intrusion detection systems into two overall classes: those 
that detect anomalies, hereafter termed anomaly detection systems, and those 
that detect the signatures of known attacks, hereafter termed signature based 
systems. Often the former automatically forms an opinion on what is 'nor­
mal' for the system, for example by constructing a profile of the commands 
issued by each user and then sounding the alarm when the subject deviates 
sufficiently from the norm. Signature systems, on the other hand, are most 
often programmed beforehand to detect the signatures of intrusions known of 
in advance. 

These two techniques are still with us today, and with the exception of hybrid 
approaches nothing essentially new has been put forward in this area. Sec­
tion 2.4 will explain these two approaches in terms of detection and estimation 
theory. 

2.3 An Architectural Model of Intrusion Detection Systems 
Since the publication of Anderson's seminal paper [AndSO], several intrusion 

detection systems have been invented. Today there exists a sufficient number of 
systems in the field for one to be able to form some sort of notion of a 'typical' 
intrusion detection system, and its constituent parts. Figure 2.2 depicts such a 
system. Please note that not all possible data/control flows have been included 
in the figure, but only the most important ones. 

Any generalised architectural model of an intrusion detection system would 
contain at least the following elements: 
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Figure 2.2. Organisation of a generalised intrusion detection system 

Audit collection Audit data must be collected on which to base intrusion de­
tection decisions. Many different parts of the monitored system can be used 
as sources of data: keyboard input, command based logs, application based 
logs, etc. In most cases network activity or host-based security logs, or both, 
are used. 

Audit storage Typically, the audit data is stored somewhere, either indefi­
nitely^ for later reference, or temporarily awaiting processing. The volume 
of data is often exceedingly large^, making this is a crucial element in any 
intrusion detection system, and leading some researchers to view intrusion 
detection as a problem in audit data reduction [Fra94, ALGJ98] 

Processing The processing block is the heart of the intrusion detection system. 
It is here that one or many algorithms are executed to find evidence (with 
some degree of certainty) in the audit trail of suspicious behavior. More will 
be said about the detector proper in Section 2.4. 

Configuration data This is the state that affects the operation of the intrusion 
detection system: how and where to collect audit data, how to respond 

^Or at least for a long time—perhaps several months or years—compared to the processing turn around time. 
^The problem of collecting sufficient but not excessive amounts of audit data has been described as "You 
either die of thirst, or you are allowed a drink from a fire hose." 
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to intrusions, etc. This is therefore the SSO's main means of controlling 
the intrusion detection system. This data can grow surprisingly large and 
complex in a real world intrusion detection installation. Furthermore, it 
is relatively sensitive, since access to this data would give the competent 
intruder information on which avenues of attack are likely to go undetected. 

Reference data The reference data storage stores information about known 
intrusion signatures—for misuse systems—or profiles of normal behavior— 
for anomaly systems. In the latter case the processing element updates the 
profiles as new knowledge about the observed behavior becomes available. 
This update is often performed at regular intervals in batches. Stored in­
trusion signatures are most often updated by the SSO, as and when new 
intrusion signatures become known. The analysis of novel intrusions is a 
highly skilled task. More often than not, the only realistic mode for operat­
ing the intrusion detection system is one where the SSO subscribes to some 
outside source of intrusion signatures. At present these are proprietary. In 
practice it is difficult, if not impossible, to make intrusion detection sys­
tems operate with signatures from an alternate source, even though it is 
technically feasible [LMPT98]. 

Active/processing data The processing element must frequently store inter­
mediate results, for example information about partially fulfilled intrusion 
signatures. The space needed to store this active data can grow quite large. 

Alarm This part of the system handles all output from the system, whether 
it be an automated response to suspicious activity, or more commonly the 
notification of a SSO. 

2.4 Explaining Intrusion Detection From the Perspective of 
Detection and Estimation Theory"̂  

Research into the automated detection of computer security violations is 
hardly in its infancy, yet little comparison has been made with the established 
field of detection and estimation theory (one exception being [LMSOO]) the 
results of which have been found applicable to a wide range of problems in 
other disciplines. In order to explain the two major approaches behind intrusion 
detection principles we will attempt such a comparison, studying the problem 
of intrusion detection by the use of the introductory models of detection and 
estimation theory. 

"̂ This section is based on [AxeOOb]. 
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Classical Detection Theory 
The problem of detecting a signal transmitted over a noisy channel is one of 

great technical importance, and has consequently been studied thoroughly for 
some time now. An introduction to detection and estimation theory is given 
in [Tre68], from which this section borrows heavily. 
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Figure 2.3. Classical detection theory model 

In classical binary detection theory (see Figure 2.3) we should envisage a 
system that consists of a source from which originates one of two signals, HO 
or HI, for hypothesis zero and one respectively. This signal is transmitted 
via some channel that invariably adds noise and distorts the signal according 
to a probabilistic transition mechanism. The output—what we receive—can 
be described as a point in a finite (multidimensional) observation space, for 
example x in Figure 2.3. Since this is a problem that has been studied by 
statisticians for some time, we have termed it the classical detection model. 
Based on an observation of the output of the source as transmitted through 
the probabilistic transition mechanism, we arrive at a decision. Our decision 
is based on a decision rule; for example: Ts or is not x in X,' where X is 
the region in the observation space that defines the set of observations that we 
believe to be indicative of HO (or HI) (see Figure 2.3). We then make a decision 
as to whether the source sent HO or HI based on the outcome of the comparison 
of a; andX. 

Note that the source and signal model HO and HI could represent any of a 
number of interesting problems, and not only the case of transmitting a one or a 
zero. For example, HI could represent the presence of a disease (and conversely 
HO its absence), and the observation space could be any number of measurable 
physiological parameters such as blood count. The decision would then be one 
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of 'sick' or 'healthy.' In our case it would be natural to assign the symbol HI 
to some form of intrusive activity, and HO to its absence. 

The problem is then one of deciding the nature of the probabilistic transition 
mechanism. We must choose what data should be part of our observation space, 
and on this basis derive a decision rule that maximizes the detection rate and 
minimizes the false alarm rate, or settle for some desirable combination of the 
two. 

When deciding on the decision rule the Bayes criterion is a useful measure­
ment of success [Tre68, pp. 24]. In order to conduct a Bayes test, we must 
first know the a priori probabilities of the source output (see Chapter 3for fur­
ther discussion). Let us call these PQ and Pi for the probability of the source 
sending a zero or a one respectively. Second, we assign a cost to each of the 
four possible courses of action. These costs are named Coo, Cio, Cn, and Coi, 
where the first subscript indicates the output from our decision rule—what we 
though had been sent—and the second what was actually sent. Each decision 
or experiment then incurs a cost, in as much as we can assign a cost or value 
to the different outcomes. For example, in the intrusion detection context, the 
detection of a particular intrusion could potentially save us an amount that can 
be deduced from the potential cost of the losses if the intrusion had gone un­
detected. We aim to design our decision rule so that the average cost will be 
minimized. The expected value—R for risk—of the cost is then [Tre68, p. 9]: 

R = CooPo^(say HO\HO is true) 

+CioPoP(say H1\H0 is true) 

+CiiPiP(say H1\H1 is true) 

+CoiPiP(say H0\H1 is true) 

It is natural to assume that Cio > CQO and Coi > Cn, in other words the 
cost associated with an incorrect decision or misjudgment is higher than that of 
a correct decision. Given knowledge of the a priori possibilities and a choice 
of C parameter values, we can then construct a Bayes optimal detector. 

Though Figure 2.3 may lead one to believe that this is a multidimensional 
problem, it can be shown [Tre68, p. 29] that a sufficient statistic can always be 
found whereby a coordinate transform from our original problem results in a 
new point that has the property that only one of its coordinates contains all the 
information necessary for making the detection decision. Figure 2.4 depicts 
such a case, where the only important parameter of the original multidimen­
sional problem is named L. 

It can furthermore be shown that the two main approaches to maximizing the 
desirable properties of the detection—the Bayes or Neyman-Pearson criteria— 
amount to the same thing; the detector finds a likelihood ratio (which will be a 
function only of the sufficient statistic above) and then compares this ratio with 



Intrusion Detection 25 

P(L|HO) 

Threshold 

Figure 2.4. One dimensional detection model 

a pre-set threshold. By varying the threshold in Figure 2.4, it can be seen that 
the detection ratio (where we correctly say HI) and the false alarm rate (where 
we incorrectly say HI) will vary in a predictable manner. Hence, if we have 
complete knowledge of the probability densities of HO and HI we can construct 
an optimal detector, or at least calculate the properties of such a detector. We 
will later apply this theory to explain anomaly and signature detection. 

Application to the Intrusion Detection Problem 

This section is a discussion of the way in which the intrusion detection 
problem may be explained in light of the classical model described above. 

Source Starting with the source, ours is different from that of the ordinary radio 
transmitter because it is human in origin. Our source is a human computer user 
who issues commands to the computer system using any of a number of input 
devices. In the vast majority of cases, the user is benevolent and non-malicious, 
and he is engaged solely in non-intrusive activity. The user sends only HO, that 
is, non-intrusive activity. Even when the user is malicious, his activity will 
still mostly consist of benevolent activity. Some of his activity will however be 
malicious, that is, he will send HI. Note that malicious has to be interpreted 
liberally, and can arise from a number of different types of activities such as 
those described by the taxonomies in for example [LBMC94, LJ97]. Thus, for 
example, the use of a pre-packed exploit script is one such source of intrusive 
activity. A masquerading^ intruder can be another source of intrusive activity. 
In this case the activity that he initiates differs from the activity that the proper 
user would have originated. 

It should be noted that we have only treated the binary case here, differenti­
ating between 'normal' behavior and one type of intrusion. In reality there are 
many different types of intrusions, and different detectors are needed to detect 

^A masquerader is an intruder that operates under false identity. The term was first used by Anderson 
in [AndSO]. 
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them. Thus the problem is really a multi-valued problem, that is, in an oper­
ational context we must differentiate between HO and HI, H2, H3,..,where 
HI-Hn are different types of intrusions. To be able to discriminate between 
these different types of intrusions, some statistical difference between a param­
eter in the HO and HI situation must be observable. This is simple, almost 
trivial, in some cases, but difficult in others where the observed behavior is sim­
ilar to benevolent behavior. Knowledge, even if incomplete, of the statistical 
properties of the 'signals' that are sent is crucial to make the correct detection 
decision. 

It should be noted that earlier classifications of computer security violations 
that exist [LBMC94, NP89, LJ97] are not directed at intrusion detection, and 
on closer study appear to be formulated on too high a level of representation 
to be directly applicable to the problem in hand. There are now a handful of 
studies that links the classification of different computer security violations to 
the problem of detection, in this case the problem of what traces are necessary 
to detect intrusions after the fact [ALGJ98, Bar04a, KMT04, Max03]. 

Probabilistic Transition Mechanism In order to detect intrusive behavior 
we have first to observe it. In a computer system context it is rare to have the 
luxury of observing user behavior directly, looking over the user's shoulder 
while he provides a running commentary on what he is doing and intends to 
do. Instead we have to observe the user by other means, often by some sort 
of security logging mechanism, although it is also possible by observing the 
network traffic emanating from the user. Other more direct means have also 
been proposed, such as monitoring the user's keystrokes. 

In the usual application of detection theory, the probabilistic transition mech­
anism, or "channel", often adds noise of varying magnitude to the signal. This 
noise can be modeled and incorporated into the overall model of the transmis­
sion system. The same applies to the intrusion detection case, although our 
"noise" is of a different nature and does not in general arise from nature, as 
described by physics. In our case we observe the subject by some (imperfect) 
means where several sources of noise can be identified. One such source is 
where other users' behavior is mixed with that of the user under study, and it is 
difficult to identify the signal we are interested in. 

If, for example, our user proves to be malicious, and sends TCP-syn packets 
from a PC connected to a network of PCs to a target host, intended to execute 
a SYN-flooding denial-of-service attack on that host. Since the source host 
is on a network of PCs—the operating systems of which are known to suffer 
from flaws that make them prone to sending packet storms that look like SYN-
flooding attacks to the uninitiated^—it may be difficult to detect the malicious 

^Or at least were prone to ten years ago. 
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user. This is because he operates from under the cover of the noise added by 
the poorly implemented TCP/IP stacks of the computers on the same source 
network. It can thus be much more difficult to build a model of our 'channel' 
than when the noise arises as a result of a purely physical process. 

Observation Space Given that the action has taken place, and that it has been 
'transmitted' through the logging system/channel, we can make observations. 
The set of possible observations, given a particular source and channel model, 
makes up our observation space. As said earlier, some results suggest that we 
can always make some sort of coordinate transformation that transforms all 
available information into one coordinate in the observation space. Thus in 
every detection situation we need to find this transform. 

In most cases the computer security we are presented with will be discrete 
in nature, not continuous. This is different from the common case in detection 
theory where the signals are most often continuous in nature. In our case a record 
from a host-based security log will contain information such as commands or 
system calls that were executed, who initiated them, any arguments such as 
files read, written to, or executed, what permissions were utilized to execute 
the operation, and whether it succeeded or not. In the case of network data 
we will typically not have such high quality since the data may not contain all 
security relevant information; for example, we will not know exactly how the 
attacked system will respond to the data that it is sent, or whether the requested 
operation succeeded or not [PN98]. The question of what data to log in order 
to detect intrusions of varying kinds is central, but for a long time this question 
was largely unaddressed. We also know little of the way different intrusions 
manifest themselves when logged by different means. 

Once again the literature is hardly extensive, although for example [ALGJ98, 
HL93, LB98] and more recently [Bar04b] have addressed the issues presented 
in this section, albeit from different angles. 

Decision Rule Having made the coordinate transformation in the previous 
step we then need to decide on a threshold to distinguish between HO and HI. 

Thus our hope when we apply anomaly detection is that all that is not normal 
behavior for the source in question—that cannot be construed as HO—is some 
sort of intrusive behavior. The question is thus to what degree abnormal equates 
to intrusive. This is perhaps most likely in the case of a masquerader who 
one may presume is not trained to emulate the user whose identity he has 
assumed. There are some studies that suggest that different users indeed display 
sufficiently different behavior for them to be told apart [LB98]. 
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Existing Approaches to Intrusion Detection 

For a survey of existing approaches to intrusion detection see [BAJ03]. Here 
we will only outline the two major methods of intrusion detection: anomaly 
detection and signature detection. These have been with us since the inception 
of the field. In short, anomaly detection can be defined as looking for the 
unexpected—that which is unusual is suspect—at which point the alarm should 
be raised. Signature detection, on the other hand, relies on the explicit codifying 
of 'illegal' behavior, and when traces of such behavior is found the alarm is 
raised. 

Anomaly Detection Taking the basic outline of detection and estimation the­
ory laid out in the beginning of this section, we can elaborate upon it in de­
scribing these methods. In contrast to the model in Figure 2.4, where we have 
knowledge of both HO and HI, here we operate without any knowledge of HI. 
Thus we choose a region in our observation space—X in Figure 2.3. To do 
so, we must transform the observed, normal behavior in such a manner that it 
makes sense in our observation space context. The region X will contain the 
transformed normal behavior, and typically also behavior that is 'close' to it, 
in such a way as to provide some leeway in the decision, trading off some of 
the detection rate to lower the false alarm rate. The detector proper then flags 
all occurrences of x in X as no alarm, and all occurrences of x not in X as an 
alarm. Note that X may be a disjoint region in the observation space. 

Signature Detection The signature detector detects evidence of intrusive ac­
tivity irrespective of the model of the background traffic; these detectors have 
to be able to operate no matter what the background traffic, looking instead for 
patterns or signals that are thought by the designers to stand out against any 
possible background traffic. Thus we choose a region in our observation space, 
but in this instance we are only interested in known intrusive behavior. Thus 
X will here only encompass observations that we believe stem from intrusive 
behavior plus the same leeway as before, in this case trading off some of the 
false alarm rate to gain a greater detection rate in the face of 'modified' attacks. 
During detector operation we flag all occurrences of x in X as an alarm, and 
all other cases as no alarm. X here may also consist of several disjoint regions, 
of course. 

Comparison with Bayes Optimal Detectors It is an open question to what 
degree detectors in these classes can be made to, or are, approximate Bayes op­
timal detectors. In the case of non-parametric intrusion detectors— detectors 
where we cannot trade off detection rate for false alarm rate by varying some 
parameter of the detector—merely studying the receiver operating characteris­
tics (ROC) curve cannot give us any clue as to the similarity to a Bayes optimal 
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detector. This is because the ROC curve in this case only contains one point, 
and it is impossible to ascertain the degree to which the resulting curve follows 
the optimal Bayes optimal detector. (See Chapter 3for a brief introduction to 
ROC curves, and [Tre68] for a thorough treatment). 

Summary 

The dichotomy between anomaly detection and signature detection that is 
present in the intrusion detection field, vanishes (or is at least weakened) when 
we study the problem from the perspective of classical detection theory. If we 
wish to classify our source behavior correctly as either HO or HI, knowledge 
of both distributions of behavior will help us greatly when making the intrusion 
detection decision. Interestingly, early on only few research prototype took 
this view [Lee99, BAJ03]; all others were firmly entrenched in either the HO 
or HI camp. It may be that further study of this class of detectors will yield 
more accurate detectors, especially in the face of attackers who try to modify 
their behavior to escape detection. A detector that operates with a strong source 
model, taking both HO and HI behavior into account, will most probably be 
better able to qualify its decisions by stating strongly that this behavior is not 
only known to occur in relation to certain intrusions, and further is not a known 
benign or common occurrence in the supervised system. 

The detectors we have developed in connection with this book (except for 
the one in Chapter 4) all take both HO and HI into account. 



Chapter 3 

THE BASE-RATE FALLACY AND 
THE DIFFICULTY OF 
INTRUSION DETECTION 

Many different demands can be made of intrusion detection systems.^ An 
important requirement of an intrusion detection system is that it be effective i.e. 
that it should detect a substantial percentage of intrusions into the supervised 
system, while still keeping the false alarm rate at an acceptable level. 

This chapter aims to demonstrate that, for a reasonable set of assumptions, 
the false alarm rate is the limiting factor for the performance of an intrusion 
detection system. This is due to the base-rate fallacy phenomenon, that in order 
to achieve substantial values of theBayesian detection rate, P{Intrusion\Alarm), 
we have to achieve a—perhaps in some cases unattainably—low false alarm 
rate. 

A selection of reports of intrusion detection performance are reviewed, and 
the conclusion is reached that there are indications that at least some types of 
intrusion detection have far to go before they can attain such low false alarm 
rates. 

Many demands can be made of an intrusion detection system (IDS for short) 
such as effectiveness, efficiency, ease of use, security, inter-operability, trans­
parency etc. Although much research has been done in the field in the past ten 
years, the theoretical limits of many of these parameters have not been studied 
to any significant degree. The aim of this paper is to discuss one serious problem 
with regard to the effectiveness parameter, especially how the base-rate fallacy 
may affect the operational effectiveness of an intrusion detection system. 

^This Chapter is based on [AxeOOa] 
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1. Problems in Intrusion Detection 
At present, the many fundamental questions regarding intrusion detection 

remain largely unanswered. They include, but are by no means limited to: 

Effectiveness How effective is the intrusion detection? To what degree does it 
detect intrusions into the target system, and how good is it at rejecting false 
positives, so called false alarms? 

Ease of use How easy is it to field and operate for a user who is not a security 
expert, and can such a user add new intrusion scenarios to the system? An 
important issue in ease of use is the question of what demands can be made of 
the person responding to the intrusion alarm. How high a false alarm rate can 
she realistically be expected to cope with, and under what circumstances is 
she likely to ignore an alarm? (It has long been known in security circles that 
ordinary electronic alarm systems should be circumvented during normal 
operation of the facility, when supervisory staff are more likely to be lax 
because they are accustomed to false alarms [Pie48]). 

Security When ever more intrusion detection systems are fielded, one would 
expect ever more attacks directed at the intrusion detection system itself, 
to circumvent it or otherwise render the detection ineffective. What is the 
nature of these attacks, and how resilient is the intrusion detection system 
to them? When the paper this chapter was based on was first published, 
this question had seen little to no study. Today this problem is more at the 
forefront of the research and we have begun to address it. 

Transparency How intrusive is the fielding of the intrusion detection system 
to the organization employing it? How many resources will it consume in 
terms of manpower, etc? 

This chapter is concerned with one aspect of one of the questions above, that 
of effectiveness. More specifically it addresses the way in which the base-rate 
fallacy affects the required performance of the intrusion detection system with 
regard to false alarm rejection. 

2. The Base-Rate Fallacy 
The base-rate fallacy"̂  is one of the cornerstones of Bayesian statistics, stem­

ming as it does directly from Bayes's famous theorem that states the relationship 
between a conditional probability and its opposite, i.e. with the condition trans­
posed: 

^The idea behind this approach stems from [Mat96, Mat97]. 
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Expanding the probability P{B) for the set of all n possible, mutually ex­
clusive outcomes A we arrive at equation (3.2): 

P{B)=^^P{Ai)^P{B\Ai) (3.2) 
z = l 

Combining equations (3.1) and (3.2) we arrive at a generally more useful 
statement of Bayes's theorem: 

The base-rate fallacy is best described through example.^ Suppose that your 
doctor performs a test that is 99% accurate, i.e. when the test was administered 
to a test population all of whom had the disease, 99% of the tests indicated 
disease, and likewise, when the test population was known to be 100% free of 
the disease, 99% of the test results were negative. Upon visiting your doctor 
to learn the results he tells you he has good news and bad news. The bad news 
is that indeed you tested positive for the disease. The good news however, 
is that out of the entire population the rate of incidence is only 1/10000, i.e. 
only 1 in 10000 people have this ailment. What, given this information, is the 
probability of you having the disease? The reader is encouraged to make a 
quick "guesstimate" of the answer at this point. 

Let us start by naming the different outcomes. Let S denote sick, and -^S, 
i.e. not S, denote healthy. Likewise, let P denote a positive test result and 
-iP denote a negative test result. Restating the information above; given: 
P{P\S) = 0.99, P{^P\^S) = 0.99, and P{S) = 1/10000, what is the 
probability P{S\P)1 

A direct application of equation (3.3) above gives: 

^ ' ^ P{S) • P{P\S) + P{^S) ' P{PhS) ^ ^ 

The only probability above which we do not immediately know is P{P\-^S). 
This is easily found though, since it is merely 1 — P{-^P\-^S) = 1% (likewise, 
P{-^S) = 1 — P{S)). Substituting the stated values for the different quantities 
in equation (3.4) gives: 

•̂ This example is from [RN95]. 
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P(5 |P ) = - /̂̂ QQQQ-Q-^^ , = 0.00980... « 1% 
^ ' ' 1/10000 • 0.99 + (1 - 1/10000) • 0.01 

(3.5) 
That is, that even though the test is 99% certain, your chance of actually 

having the disease is only 1/100, because the population of healthy people is 
much larger than the population with the disease. For a graphical representation, 
in the form of a Venn diagram, depicting the different outcomes, see Figure 3.1. 

-.P&-.S 

1) 

Figure 3.1. Venn diagram of medical diagnostic example 

Although the Venn diagram is not to scale it clearly demonstrates the basis of 
the base-rate fallacy, i.e. that the population in the outcome S is much smaller 
than that in -^S and hence, even though P{P\S) = 99% and P{-^P\-^S) = 
99%, the relative sizes of the missing 1% in each case—areas 2) and 4) in the 
diagram—are very different. 

Thus when we compare the relative sizes of the four numbered areas in the 
diagram, and interpret them as probability measures, we can state the desired 
probability, P{S\P)—i.e. "What is the probability that we are in area 3) given 
that we are inside the P-area?" It may be seen that, area 3) is small relative to 
the entire P-area, and hence, the fact that the test is positive does not say much, 
in absolute terms, about our state of health. 

This result often surprises people, ourselves included, and the phenomenon— 
that humans in general do not take the basic rate of incidence, the base-rate. 
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into account when intuitively solving such problems of probability—is aptly 
named "the base-rate fallacy." 

3. The Base-Rate Fallacy in Intrusion Detection 

In order to apply this reasoning in computer intrusion detection we must first 
find, or make reasonable assumptions about the various probabilities. 

3.1 Basic Frequency Assumptions 

Let us for the sake of further argument hypothesize a figurative computer 
installation with a few tens of workstations, a few servers—all running UNIX— 
and a couple of dozen users. Such an installation could produce in the order of 
1,000,000 audit records per day with some form of "C2" compliant logging in 
effect (in itself a testimony to the need for automated intrusion detection). 

Suppose further that in such a small installation we would not experience 
more than a few, say one or two, actual attempted intrusions per day. Even 
though it is difficult to get any figures for real incidences of attempted computer 
security intrusions, this does not seem to be an unreasonable number. 

Furthermore, assume that at this installation we do not have the manpower 
to have more than one site security officer—SSO for short—who probably has 
other duties, and that the SSO, being only human, can only react to a relatively 
low number of alarms, especially if the false alarm rate is high (50% or so), see 
Section 3.2. 

Even though an intrusion could possibly affect only one audit record, it 
is likely on average that it will affect a few more than that. Furthermore, a 
clustering factor actually makes our estimates more conservative, so it was 
deemed prudent to include one. Using data from a previous study of the trails 
that SunOS intrusions leave in the system logs [ALGJ98], we can estimate that 
ten audit records would be affected in the average intrusion. 

3.2 Human Machine Interaction in Intrusion Detection 

The previous assumptions above are "technical" in nature, i.e. those well 
versed in the field of computer security can make similar predictions, or adjust 
the ones above to suit their liking. It is a simple matter to verify or predict similar 
measures. However, the factor of the performance of the human operator does 
not lend itself to the same technological estimates. Thus, a crucial question is 
that of the capacity of the human operator to correctly respond to the output of 
the system. Especially the operator's capacity to tolerate false alarms. 

Unfortunately there have been no experiments concerning these factors in 
the setting of computer security intrusion detection. There is, however, some 
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research in the context of process automation and plant control, such as would 
be the case in a (nuclear) power station, paper mill, steel mill, large ship etc. 

Broadly speaking, research has shown [Ras86, p. 5] that a human operator 
(decision maker) in such an environment has to: 

Detect the need for intervention and to 

observe important data in order to have direction for subsequent activities. He 
then has to analyze the data in order to 

identify the present state of affairs and to 

evaluate their possible consequences with reference to operational goals and 
company policies. Then a 

target state into which the system should be transfered has to be chosen, and 
the 

task that the decision maker has to perform is selected from a review of the re­
sources available to reach said target state. When the task has been identified 
the proper 

procedure i.e. how to do it, must be planned and executed. 

In our case we have chosen to aid the operator with an intrusion detection 
system. However we quickly notice the absence of any discussion about the 
rest of the decision making chain—even though the recovery element has seen 
some general study—when it comes to the research into human interaction with 
intrusion detection systems. Most authors don't even discuss the second step 
in recovery above, namely that of aiding the operator with observations about 
the state of the system. (The normal state of which is most often not known in 
our case. No-one knows what the traffic on our computer networks typically 
looks like, hence the reported difficulty of even deciding if something really is 
amiss [Sto95].) 

More specifically, in this particular case, we are interested in the operator's 
ability to act "correctly" in the presence of false alarms. I.e. how many false 
alarms an operator can tolerate without loosing his vigilance. 

This is a difficult question to answer in this particular context, not only 
because there has been no research into the question. A few difficulties are: 

• First, the modeling of the human operator handling such a highly complex 
and cognitive task as the detection and resolution of a computer security 
incident is difficult in general terms. It is doubtful that we will ever reach a 
quantitative model of human performance and limitations in this area. We 
can make several qualitative statements however [Wic92, pp. 258]. 
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• Second, several different factors influence the performance of the operator 
at different times, such as previous experience, level of training, work load, 
external and internal stresses, state of vigilance etc. 

• Third, the human operator is prone to several different kinds of bias when 
making a decision of this kind, biases relating to his in ability to correctly 
make statistical estimates, of making correct logical inferences etc. From 
our perspective the bias of tending to stay with the original hypothesis (that 
no intrusion has taken place in our case) and not seek disconfirmatory evi­
dence is especially interesting to us [Wic92, pp. 280]. 

What previous research in other areas seem to tell us specifically about our 
situation, is that human operators tend to have a very low tolerance for false 
alarms. During normal operation, humans have a tendency to over trust the in­
fallibility of the automated equipment. However once the equipment is seen to 
malfunction (raise false alarms in our case) humans tend to mistrust the equip­
ment to a larger degree than what would be warranted by its actual performance. 
"Trust once betrayed is hard to recover" [Wic92, p. 537] Perhaps surprisingly, 
there has been little empirical research in this area [Nyg94, Wic92, p. 537]. 

What studies have been made [Nyg94, Dea72], seem to indicate that our 
required level of false alarms, 50%, is a very conservative estimate. Most 
human operators will have completely lost faith in the device at that point, 
opting to treat every alarm with extreme skepticism, if one would be able to 
speak of a "treatment" at all, the intrusion detection system would most likely 
be completely ignored in a "civilian" setting. 

3.3 Calculation of Bayesian Detection Rates 
Let / and - i / denote intrusive, and non-intrusive behavior respectively, and 

A and -^A denote the presence or absence of an intrusion alarm. We start by 
naming the four possible cases (false and true positives and negatives) that arise 
by working backwards from the above set of assumptions: 

Detection rate Or true positive rate. The probability P{A\I), i.e. that quantity 
that we can obtain when testing our detector against a set of scenarios we 
know represent intrusive behavior. 

False alarm rate The probability P{A\-^I), tht false positive rate, obtained 
in an analogous manner. 

The other two parameters, P{-^A\I), the False Negative rate, andP(->yl|-i/), 
the True Negative rate, are easily obtained since they are merely: 

P{--A\I) = 1 - P{A\I); P(-^h/) - 1 - P{A\-^I) (3.6) 

Of course, our ultimate interest is that both: 
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• P{I\Ä)—that an alarm really indicates an intrusion (henceforth called the 
Bayesian detection rate though keeping in line with terminology in other 
fields, the term positive predictive value would perhaps have been a better 
choice), and 

• P(-i/|-i^)—that the absence of an alarm signifies that we have nothing to 
worry about, 

remain as large as possible. 
Applying Bayes's theorem to calculate P{I\Ä) results in: 

PiI\Ä) = ^ W • P(^\^) (3 7) 

Likewise for P(-iI | - i^): 

These assumptions give us a value for the rate of incidence of the actual 
number of intrusions in our system, and its dual (10 audit records per intrusion, 
2 intrusions per day, and 1,000,000 audit records per day). Interpreting these 
as probabilities: 

P ( / ) = 1 / h l ^ = 2 .10-^ 
^ ^ / 2 • 10 (3.9) 

P{^I) = 1 - P{I) = 0.99998 

Inserting equation (3.9) into equation (3.7): 

P(I\A) = 2 ' 10" ' ' -P(-^I^) (3 10) 
^ ' ^ 2 .10-5 • P{A\I) + 0.99998 • P{A\^I) ^ ^ ^ 

Studying equation (3.10) we see the base-rate fallacy clearly. By now it 
should come as no surprise to the reader, since the assumptions made about 
our system makes it clear that we have an overwhelming number of non-events 
(benign activity) in our audit trail, and only a few events (intrusions) of any 
interest. Thus, the factor governing the detection rate (2 • 10"^) is completely 
dominated by the factor (0.99998) governing the false alarm rate. Further­
more, since 0 < P{A\I) < 1, the equation will have its desired maximum for 
P{A\I) = 1 and P{A\-^I) = 0, which results in the most beneficial outcome 
as far as the false alarm rate is concerned. While reaching these values would 
be an accomplishment indeed, they are hardly attainable in practice. Let us 
instead plot the value of P{I\Ä) for a few fixed values of P{A\I) (including 
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Figure 3.2. Plot of Bayesian detection rate versus false alarm rate 

the "best" case P(A|/) = 1), as a function of P{A\-^I) (see Figure 3.2). It 
should be noted that both axes are logarithmic. 

It becomes clear from studying the plot in Figure 3.2 that even for the unre-
alistically high detection rate 1.0 , we have to have a very lov^ false alarm rate 
(on the order of 1 • 10"" )̂ for the Bayesian detection rate to have a value of 66%, 
i.e. about two thirds of all alarms will be a true indication of intrusive activity. 
With a more realistic detection rate of, say, 0.7, for the sdivat false alarm rate, 
the value of the Bayesian detection rate is about 58%, nearing fifty-fifty. Even 
though the number of events (intrusions/alarms) is still low, it is our belief that a 
low Bayesian detection rate would quickly "teach" the SSO to (un)safely ignore 
all alarms, (especially if the detected intrusions were of a trivial, say probing, 
nature) even though their absolute numbers would theoretically have allowed a 
complete investigation of all alarms. This becomes especially true as the system 
grows; a 50% false alarm rate of in total of 100 alarms would clearly not be 
tolerable. Note that even quite a large difference in the detection rate does not 
substantially alter the Bayesian detection rate, which instead is dominated by 
\hQ false alarm rate. Whether such a low rate of false alarms is at all attainable 
is discussed in section 4. 
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It becomes clear that, for example, a requirement of only 100 false alarms 
per day is met by a large margin with SL false alarm rate of 1 • 10~^. With 10^ 
"events" per day, we will see only 1 false alarm per day, on average. By the 
time our ceiling of 100 false alarms per day is met, at a rate of 1 • 10~^ false 
alarms, even in the best case scenario, our Bayesian detection rate is down to 
around 2%,"̂  by which time no-one will care less when the alarm goes off. 

Substituting (3.6) and (3.9) in equation (3.8) gives: 

p( .| , . 0.99998 • ( l - P ( A h J ) ) 
^" ' " ^ 0.99998 • (1 - P(>lh/ ) ) + 2 . 10-^ . (1 - P(A|/)) ^* ^ 

A quick glance at the resulting equation (3.11) raises no cause for concern. 
The large P{^I) factor (0.99998) will completely dominate the result, giving 
it values near 1.0 for the values of P{A\-^I) under discussion here, regardless 
ofthe value of P(A|/) . 

This is the base-rate fallacy in reverse, if you will, since we have already 
demonstrated that the problem is that we will set off the alarm too many times 
in response to non-intrusions, combined with the fact that we do not have many 
intrusions to begin with. Truly a question of finding a needle in a haystack. 

The author does not see how the situation underlying the base-rate fallacy 
problem will change for the better in years to come. On the contrary, as comput­
ers get faster they will produce more audit data, while it is doubtful that intrusive 
activity will increase at the same rate. In fact, it would have to increase at a 
substantially higher rate for it to have any effect on the previous calculations, 
and were it ever to reach levels sufficient to have such an effect—say 30% or 
more—the installation would no doubt have a serious problem on its hands, to 
say the least! It would most definitely not have a detection problem anymore. 

4. Impact on Intrusion Detection Systems 
As stated in the introduction to this book, approaches to intrusion detection 

can be divided into three major groups, signature-hdiS>t&, anomaly-h^std, and 
combined detectors, i.e. detectors that operate with a model of both benign and 
malicious behavior. The previous section developed requirements regarding 
false alarm rates and detection rates in intrusion detection systems in order 
to make them useful in the stated scenario. This section will compare these 
requirements with reported results on the effectiveness of intrusion detection 
systems. 

It can be argued that this reasoning does not apply to anomaly-based in­
trusion detection. In some cases anomaly-based detection tries not to detect 

"^Another way of calculating that differs from equation (3.10) is of course to realise that 100 false alarms 
and only a maximum of 2 possible valid alarms gives: 2+^00 ^ ^^* 
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intrusions per se, but rather to differentiate between two different subjects, 
flagging anomalous behavior in the hopes that it is indicative of a stolen user 
identity for instance, see for example [LB98], which even though it reports 
performance figures, is not directly applicable here. However, we think the 
previous scenario is useful as a description of a wide range of more "immedi­
ate," often network-based, attacks, where we will not have had the opportunity 
to observe the intruder for an extended period of time "prior" to the attack. 

4.1 ROC Curve Analysis 
There are general results in detection and estimation theory that state that the 

detection and false alarm rates are linked [Tre68], though the extent to which 
they are applicable here is still an open question. Obviously, if the detection 
rate is 1, saying that all events are intrusions, we will have a false alarm rate of 
1 as well, and conversely the same can be said for the case where the rates are 
0.̂  Intuitively, we see that by classifying more and more events as intrusive— 
in effect relaxing our requirements on what constitutes an intrusion—we will 
increase our detection rate, but also misclassify more of the benign activity, and 
hence increase om false alarm rate. 

Assumed ROC — I — 
Ripper —K—• 

Bayesian ev. class ••••)K-
Helman frequentist D 

W&S - • • • -
Bayesvis - - 0 — 

Chi2vis •••••••• 

0.6 ! Ä ' ' . . / / . . 
^ 7 1 

m —̂ 
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Figure 3.3. ROC-curves for the "low per- Figure 3.4. ROC-curve for the "high per­
formers" formers" 

Îf you call everything with a large red nose a clown, you'll spot all the clowns, but also Santa's reindeer, 
Rudolph, and vice versa. 
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Plotting the detection rate as a function of ih^ false alarm rate we end up 
with what is called a ROC—Receiver Operating Characteristic—curve. (For 
a general introduction to ROC curves, and detection and estimation theory, 
see [Tre68].) We have already stated that the points (0; 0) and (1; 1) are mem­
bers of the ROC curve for any intrusion detector. Furthermore, the curve be­
tween these points is convex; were it concave, we would do better to reverse our 
decision. Nor can it contain any dips, as that would in effect indicate a faulty, 
non-optimal detector, since a randomized test would then be better; we could 
achieve a detector operating at any point along the interpolated line between 
the two points straddling the dip, by making a weighted randomized decision 
involving the detectors at the straddling points. If we wanted a detector with 
a performance corresponding to the point half way between the two straddling 
points we would just need to toss a fair coin and run the lower detector when 
the coin came up heads and the upper when the coin came up tails. We're not 
seriously suggesting that anyone actually build such a detector, but the obser­
vation serves as a check against poorly performing detectors. If your detector 
ROC has a dip, you should be able to do better in that region of the curve. See 
"Assumed ROC" curve in figures 3.3 and 3.4 for the ROC curve that depicts 
our previous example. 

We see that the required ROC curve has a very sharp rise from (0; 0) since we 
quickly have to reach acceptable detection rate values (0.7) while still keeping 
ihe false alarm rate under control. 

4.2 Previous Experimental Intrusion Detection Evaluations 
When we first wrote this paper, the literature was not overladen with experi­

mental results from tests of intrusion detection systems. Now, some five years 
later, this is still very much the case, even though quite a few extra results have 
been reported. Ideally we would like several different results from the different 
classes of intrusion detectors, evaluated on the same data sets. Unfortunately 
there only exists a few reports of anomaly detection performance in this regard 
e.g [HL93] with no example of specification based intrusion detection, and one 
independent report of a classical detector [WFP99]. Several signature based 
detectors have been tested for DARPA by however [GLC"^98]. 

Unfortunately data from the evaluation performed by DARPA by Lincoln 
Labs at MIT [LGG+98, GLC+98] is unavailable to us for independent eval­
uation because of U.S. export restrictions, and furthermore serious doubts as 
to the quality of parts of that data have been raised [MC03]; it turns out that 
some of the fields in the network data differ between the simulated background 
traffic and the injected attacks in a manner that makes them completely trivial 
to differentiate! Furthermore this difference has no bearing on the attack versus 
benign traffic dichotomy whatsoever, but is purely an artifact of the merging 
process. It is currently unknown to what degree the evaluation of the intrusion 
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detectors studied below suffered from this flaw, i.e. to what extent they picked 
up on the fields that differed, or whether they operated without specific knowl­
edge of this difference. It should be noted that this flaw is asymmetric in that, 
if the detector takes advantage of it, it will tend to make the detector look better 
than it should. It will never make detectors look worse. Other criticisms of the 
DARPA evaluation have also been raised [McHOO]. 

When this paper was first written, the details of this study had not been 
published, but since then a paper [LFG+00] and a very detailed report of the 
data and procedures of the experiment have been made available [HLF"^01]. 
Thus, what has been made known about the DARPA evaluation is that the 
study was conducted using a simulated network of workstations, transmitting 
simulated traffic. This traffic was generated based on real traffic observed on 
a large US Air Force base, and a large research institute. This of course lends 
some credibility to an argument about the generality of the background traffic. 
Of course, the degree to which the background traffic is representative of the 
background traffic in the field is a crucial question when it comes to the value 
of the test as an indicator of false alarm rates during normal usage. 

In the test, a number of different attacks were then inserted into the simulated 
network, including denial of service attacks against the network, and "root" ex­
ploits against individual workstations. The experimenters invited several dif­
ferent intrusion detectors to participate in the study. These were all signature 
based detectors operating on either network or host data. Even though there 
is more going on behind the scenes (the detection rate varies between approx­
imately 20%-90% for the best scoring detector for all attacks) we will limit 
the presentation the best overall scores for the conglomerate of detectors in 
the network study, i.e. the detector resulting from combining the four different 
detectors and choosing the best performer in all instances. Note that this may 
not be realistic, since it would be difficult to perform this conglomeration in 
practice, to say the least. 

Also not all detectors performed equally well when dealing with all intru­
sions, and it is a general criticism that in the case of signature based detection, 
the designer of the signature can easily trade off detection rate for false alarm 
rate by varying the generality of the signature. The more general it is, the more 
variations of the same intrusive behavior it will detect, but at the cost of a higher 
false alarm rate. It is not known to what extent the DARPA evaluation used 
variations of the attacks presented to the designers of the intrusion detection 
systems for training purposes, in the final evaluation. This is an important point 
in that when such systems are commercialized, it will be impossible to keep 
the detection signatures secret from the would be intruders, and the more savvy 
among them will of course attempt to vary their techniques in order to evade 
detection. A recent paper investigates just how brittle such signatures can be in 
the face of modification for the purpose of evasion of the IDS [VRB04]. 
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Much more can be said about this evaluation, but we will limit our comments 
to the above. Of course choosing the best performer makes our comparison more 
conservative, even though this is somewhat moderated by the flaws inherent in 
the data. 

The second study [WFP99] lists test results for six different intrusion de­
tection methods that have been applied to traces of system calls made into the 
operating system kernel by nine different privileged applications in a UNIX en­
vironment. Most of these traces were obtained from "live" data sources, i.e. 
the systems from which they were collected were production systems. The 
authors' hypothesis is that short sequences of system calls exhibit patterns that 
describe normal, benign activity, and that different intrusion detection mech­
anisms can be trained to detect abnormal patterns, and flag these as intrusive. 
The researchers thus trained the intrusion detection systems using part of the 
"normal" traffic, and tested their false alarm rate on the remaining "normal" 
traffic. They then trained the systems on intrusive scenarios, and inserted such 
intrusions into normal traffic to ascertain the detection rate. The experimental 
method is thus close to the one described in Sections 2 and 3 of this chapter. 
This study evaluated as one of the systems the self learning "classical" detector, 
RIPPER, described by Lee [Lee99]. 

The third study [HL93] is a treatise on the fundamental limits of the effective­
ness of intrusion detection. The authors constructs a model of the intrusive and 
normal process and investigate the properties of this model from an anomaly 
intrusion detection perspective under certain assumptions. Their approach dif­
fers from ours in that they do not provide any estimates of the parameters in 
their model, opting instead to explore the limits of effectiveness when such in­
formation is unavailable. Of greatest interest here is their conclusion in which 
the authors plot experimental data for two implementations, one a frequentist 
detector that—it is claimed—is close to optimal under the given circumstances, 
and an earlier tool designed by the authors. Wisdom & Sense [VL89]. Unfor­
tunately, only one type of anomaly detection system, one that operates with 
descriptive statistics of the behavior of the subject, is covered. As previously 
mentioned, specification based intrusion detection is not covered, and further­
more, neither are more "sophisticated" detectors, such as neural network based 
detectors (such as [DBS92]), that take time series behavior of the subject into 
account. 

The fourth study is from a more recent attempt at optimizing the combination 
of several smaller (i.e. reduced in scope) anomaly detectors using Bayesian 
belief networks applied to traces of system calls [KMRV03]. The resulting 
detector was trained and applied to the system call traces of a few different 
server processes that were exploited as a result of network based (or network 
launched) attacks in the Lincoln Labs evaluation. As the detector didn't see the 
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network traffic directly it did not suffer from the flaw in network data described 
earlier. 

The results from the studies above and from our own two visualizing de­
tectors (named Bayesvis and Chilvis) described later in this book, have been 
plotted in figures 3.3 and 3.4. Where a range of values were given in the original 
presentation, the best—most "flattering" if you will—value was chosen. Fur­
thermore, since not all the work cited to provided actual numerical data, some 
points are based on our interpretation of the presented values. In the case of 
the DARPA study the results were rescaled to conform with our requirements. 
(The original DARPA test assumes 66,000 events per day instead of our 100,000 
events per day.) We feel that these are accurate enough for the purpose of giving 
the reader an idea of the performance of the systems. 

The cited work can be roughly divided into two classes depending on the 
minimum false alarm rate values that are presented, and hence, for clarity, the 
presentation has been divided into figures, where the first (Figure 3.3) presents 
the first class, with larger values for the false alarm rate. These consists of 
most of the anomaly detection results in this study with the exception of the 
more modem detector reported in [KMRV03] named Bayesian ev. class in the 
figure. In the figure "Helman frequentist," and "W&S" denote the detection 
results from [HL93]. It is interesting to note, especially in the light of the 
strong claims made by the authors of this evaluation, that all of the presented 
false alarm rates are several orders of magnitude larger than the requirements 
put forth in Section 3 and that a later anomaly detection systems surpasses 
it. It should be noted that the detectors developed by the authors were run on 
web server data that contained only the types of attacks and not the instances 
such as for all other detector results reported here. Hence if easily detected 
types of attack were very prevalent in the data this would tend to underplay the 
performance of these detectors, and vice versa. They are included here mainly 
to illustrate the fact that even though they report false alarm rates that are much 
higher than those postulated here, they still work (or so we would claim) in 
that they address another facet of the problem, namely that of how to present 
the data to the operator in such a way as to make the false alarms (and true 
alarms for that matter) as easily identifiable as possible, permitting the operator 
to remain effective. 

The second class of detectors, depicted in Figure 3.4, consists of the average 
results of Ripper [Lee99], a high performance Hidden Markov Model detector 
(labeled "HMM" in the figure) tested by Warrander et. al. in [WFP99], and the 
DARPA results. Here the picture is less clear. The authors report false alarm 
results close to zero for lower detection rates, with one performance point nearly 
overlapping our required performance point. The HMM detector is also close 
to what we would require. It is more difficult to generalize these results, since 
they are based on one method of data selection, and the authors do not make as 
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strong a claim as those made for the previous set of detectors. The DARPA data 
from [GLC+98], show up as "DARPA TCP" in Figure 3.4. They are also in the 
vicinity of the required performance point, but the question of the generality 
of the training/test data, and hence the results, remains. Note that the more 
modem anomaly detection system (Bayes ev. class) is plotted here also because 
it has one operational point at a detection rate of just under 0.6 for a false alarm 
rate of zero. It is also interesting to note (though difficult to see in the figures) 
that it holds this constant detection rate for false alarm rate increasing to close 
to 0.001. This phenomenon repeats itself for the following steps up in detection 
rate, where the same detection rate is reported for a range of false alarm rates, 
giving the ROC curve a stair-like appearance. As we have discussed previously, 
this means that there is, in theory at least, room for improvement, as a simple 
randomized weighing of these points would lead to a curve consisting of a 
convex polygon shape. So even though this detector does not reach our goal for 
detection rate, it is of course a strong result in that it manages a decent detection 
rate at zero false alarms despite being a pure anomaly detector. 

5. Future Directions 
One sticking point is the basic probabilities that the previous calculations are 

based on. These probabilities are subjective at present, but future work should 
include measurement either to attempt to calculate these probabilities from ob­
served frequencies—the frequentist approach—or to deduce these probabilities 
from some model of the intrusive process and the intrusion detection system— 
the objectivist approach. The latter would in turn require real world observation 
to formulate realistic parameters for the models. 

Furthermore, this discourse treats the intrusion detection problem as a binary 
decision problem, i.e. that of deciding whether there has been an "intrusion" or 
not. The work presented does not differentiate between the different kinds of 
intrusions that can take place, and nor does it recognize that different types of 
intrusions are not equally difficult or easy to detect. Thus on a more detailed 
level, the intrusion detection problem is not a binary but rather an n-valued 
problem. 

Another area that needs attention is that of the SSO's capabilities. How 
does the human-computer interaction take place, and precisely which Bayesian 
detection rates would an SSO tolerate under what circumstances for example? 
This is the question that we address in the remainder of the book. 

6. Further Reading 
Since the first publication of the material on which this chapter is based, oth­

ers have approached the problem of determining the effectiveness of intrusion 
detection, most notably Lee et. al. [LFM"^02] where they expand on the model 
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presented here by considering different types of attacks and adding varying 
costs for their detection and failure of detection. 

7. Conclusions 
This chapter demonstrated that intrusion detection in a realistic setting is 

harder than was perhaps thought. This is due to the base-rate fallacy problem, 
because of which the factor limiting the performance of an intrusion detection 
system is not the ability to identify behavior correctly as intrusive, but rather its 
ability to suppress false alarms. A very high standard, less than 1/100,000 per 
"event" given the stated set of circumstances, will have to be reached for the 
intrusion detection system to live up to these expectations as far as effectiveness 
is concerned. 

The cited studies of intrusion detector performance that were plotted and 
compared indicate that anomaly-based methods may have had a long way to go 
before they could reach these standards, since their false alarm rates were several 
orders of magnitude larger than what we demand, but that more recent results 
showed reason for hope in this respect. When we come to the case of signature-
based detection methods the picture was less clear. Even though the cited work 
seems to indicate that current signature intrusion detectors can operate close to 
the required performance point, how well these results generalize in the field 
was and is still an open question. We only have three data point when it comes to 
the more qualified "classical" detectors, and the first seemed to perform on par 
with signature based detectors while our own approaches were several orders 
of magnitude off. 



Chapter 4 

VISUALIZING INTRUSIONS: WATCHING THE 
WEBSERVER 

As we learned in the previous chapter, a significant problem with intrusion 
detection systems is the high number of false alarms. In this chapter^ we begin 
our investigation into the use of information visualization [CMS99, SpeOl] in 
intrusion detection. The main problem with applying information visualization 
to intrusion detection is the large amount of data that the user is faced with. To 
address this we apply an anomaly detection inspired method to reduce the log 
to manageable proportions, before applying graph visualization to understand 
the actual data. The hypothesis is that this enables the user to benefit from the 
strengths of both visualization—quickly making sense of medium size data sets, 
and anomaly detection—summarily discarding large amounts of uninteresting 
data, all the while avoiding the problems of visualization having a limit to the 
amount of data that can reasonably be handled, and anomaly detection having 
a high false alarm rate for decent detection rates. 

We believe that the application of visualization to intrusion detection has a 
number of other desirable effects; mainly that the site does not need as detailed a 
security policy as with pre-programmed intrusion detection systems, and that an 
understanding of the underlying security principles being violated is furthered. 
Applying information visualization to the problem of intrusion detection may 
seem obvious (at least in retrospect) but success is by no means assured. The 
main problem is one of scale: most information visualization techniques cannot 
be used to visualize the large amounts of data with which we are faced, at least 
not in a straightforward manner. On the order of thousands of data objects are 
the norm, rather than the hundreds of thousands we are faced with here [SpeOl]. 

^This chapter is based on [Axe04b]. 
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Therefore we investigate the use of some form of anomaly based log reduction 
to reduce these logs prior to visualization, drawing on the strengths of both 
methods, to combat their respective weaknesses. 

To that end we have chosen to perform an empirical study of the access 
requests made to a fairly large public webserver. We develop and apply an 
anomaly based log reduction system to the access requests to reduce their num­
ber to manageable size. The hypothesis being that we can tolerate a high number 
of false alarms since we will visualize the output. Thus a simple anomaly based 
scheme will suffice. We then develop a visualization technique that visualizes 
the structure of the selected access requests, and apply the technique to the 
reduced log to identify benign and malicious accesses. The chapter ends with 
a more detailed study of the results of the visualization technique and the log 
reduction system. 

1. The Experimental System 
For the experiment, a webserver access log was studied. HTTP is of course a 

major protocol (indeed to the general public the World Wide Web is the Internet), 
and very important from a business perspective in many installations. Also we 
believe that there would be security relevant activity to be found in the webserver 
log under study, since there have been numerous (mostly automated) attacks 
reported e.g. [CEROlb, CEROla]. In addition, webserver logs are an example 
of application level logging which is an area that has received relatively little 
attention. Attention instead being focused on lower level network protocols 
or lower level host based logs. Also important is the fact that webserver logs 
are less sensitive from a privacy perspective—something that is not true when 
monitoring network traffic in general—since it is a service we provide to the 
general public who have lower expectation of privacy, and hence act accordingly. 
We recognize that this may not be true of every webserver in operation. 

It should be stressed that the primary interest is in experimenting with the 
effectiveness of the combination of visualization and anomaly based log reduc­
tion, not in producing a realistic tool for usage in the field. Unfortunately there 
is a dearth of publicly available corpora useful for intrusion detection research. 
The most popular such corpora is the Lincoln Labs DARPA evaluation data, 
even though it is not without its flaws [McHOO]. As it is export controlled it is 
unfortunately unavailable to us. 

The webserver under study serves a university Computer Science department. 
The server was running Apache version L3.26, and set to log according to the 
common log format. The log consists of a line based text file with each line 
representing a single HTTP access request. The request field i.e. the actual 
HTTP request sent to the server, is important as it is the central point of many 
attacks against a web server. The request field consists of the request method 
("GET", "HEAD", "CONNECT", etc), followed by the path to the resource 
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the client is requesting, and the method of access (e.g. "HTTP 1.1"). Thtpath 
in turn can be divided into components separated by certain reserved characters. 

We studied the log for the month of November 2002, since it was believed 
that it would contain security relevant incidents, and we had access to later logs 
with which to compare the results. The access log contained ca. 1.2 million 
records. Selecting the actual request fields and removing duplicates ca. 220000 
unique requests were identified. Because of their importance it is these unique 
requests that will be studied in the rest of the chapter. 

2. The Log Reduction Scheme 
The log reduction scheme is based on descriptive statistics; in this case the 

frequencies with which events occur. This is in the same vein as seminal intru­
sion detection systems such as NIDES [AFV95], though the approach here is 
simpler still. In order to classify the requests according to how unusual they are 
they are first cut up into components letting the reserved characters " ?:&=+$," 
separate the fields. For example a request such as "GET /pub/index.html 
HTTP 1.1", is separated into the components "GET", "pub","index.html", 
"HTTP" and "1.1". The absolute frequencies of the fields as they appear in 
different unique request strings are counted. 
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Figure 4.1. Frequencies of component fre­
quencies 

Figure 4.2. Requests sorted by lowest score 

The request as a whole is scored by calculating the average of the absolute 
frequencies of the path components and hence requests consisting of unusual 
components have a low score, signifying that they are viewed as anomalous. 
However, studying the frequencies of the component frequencies we see that 
a few high scoring elements (such as "GET") could skew (i.e. drive up) the 
average. Therefore a cutoff is applied. Figure 4.1 lists the frequencies of the 
frequencies of the components. Studying the figure we see that a cutoff of 1000 
seems reasonable since most of the activity appears to have died off by then. 
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There are very few components with frequencies above 1000 and since they 
represent elements that are very common, they would tend to drown the lower 
frequency components we are interested in. Figure 4.2 plots the scores of the 
requests as a function of the ordering. The lowest scoring 5200 accesses are 
selected since that gives us a manageable amount of data to visualize. 

3. Visualizing the Lowest Scoring Requests 
The idea is to visualize the structure (and clusterings) of the various requests, 

the hypothesis being that differences in structure will enable the user to (rela­
tively) quickly identify patterns of benign and malicious access. To accomplish 
this, the requests are cut into components as described in the previous section. 
The resulting components are visualized as a general graph where adjacent 
components in the request string are linked via directed edges in the graph. 
Using the same example as before: the request "GET /pub/index.html HTTP 
1.1", is cut up into nodes ("GET" etc.) with directed edges connecting "GET" 
with "pub", "pub" with "index.html" etc. 

To visualize the resulting graph the graph visualization tool Tulip was cho­
sen.-̂  Tulip has extensive features for interactive viewing and manipulation of 
general graphs. These aspects are unfortunately difficult to capture in writing 
(even with illustrations). 

To perform the actual detection the 5200 lowest scoring accesses is visualized 
in Figure 4.3 ^ as a three dimensional general graph. The circular structure at 
the top of the graph that can be seen to reach almost all of the rest of the graph 
is the "GET"-node. Note that the edges are not drawn as solid lines, since this 
would completely occlude the view. 

At first Figure 4.3 may look daunting, but closer scrutiny reveals several large 
features. Close to the center of the picture for example, we see a large double 
ring structure. Contrasting it with all other features, it looks rather unique, there 
is no other structure that looks similar (at least on this level), so we decide to 
investigate further. 

Enlarging the feature in question leads to Figure 4.4. Following the links 
(which is somewhat difficult to do in the static display here) we learn of a 
loose structure that starts with either "cgi-bin" or "cgi-local" and progresses 
via "recipient", "subject" and then the unlikely looking random text strings. It 
turns out that these text strings are in fact recipient email addresses for aol.com 
and hotmail.com email users. The message to be mailed in many cases (but 
not all) purports to be from John Doe, and is simply "Is anybody out there?" 
So this particular access pattern seems to be a spam attack, trying to use a 
misconfigured HTML to mail gateway that is commonly available. It was 

^Tulip is freely available under the GPL from "http://www.tulip-software.org". 
^The PDF-rendition of this graph may be clearer than a printed image. 

http://aol.com
http://hotmail.com
http://www.tulip-software.org
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Figure 4.3. Graph of the lowest scoring requests 

not active on the server however. The unUkely looking recipient names are 
probably automatically generated and the messages sent in the hope of eliciting 
a response and in doing so finding legitimate email addresses. Note that a tree 
visualization would have been less powerful here, since there are two major 
(early in the request) parents of this particular pattern: "cgi-bin" and "cgi-
local". When visualized as a tree these branches would not have shared the 
latter features, even when they would have been the same. 

We are usually not so fortunate as to be able to identify attacks the moment 
we lay our eyes on the graph. Instead we have to repeat the above detailed 
analysis. It so happens that all the other major features that are identifiable in 
Figure 4.3 are uninteresting. However, they are all also much more regular than 
the pattern we have just seen. This makes it possible for the user to eliminate 
many edges by eliminating fewer key parent nodes, slashing away what amounts 
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Figure 4.4. Zoom on feature (Spam attack in this case) 

to whole (improper) subtrees, and this fairly large graph can be whittled down 
with a relatively modest amount of effort."̂  

An example of this process is depicted in Figure 4.5.^ The accesses to files 
belonging to the user carlsson form a regular subtree that is easily identified as 
having nothing of a security relevant nature and hence easily discarded. This 
subgraph contains the data from 145 access requests, letting us discard some 3% 
of the reduced log in one fell swoop. Looking at the distribution of accesses in 
similar subgraphs, the twenty largest benign subgraphs (ranging from 213 to 59 
access requests respectively) contain 42% of the access requests under scrutiny, 
and the first 180 benign subgraphs contain some 80% of all access requests in 
the reduced log. Hence most benign requests can be easily discarded. 

A further illustration of this process can be seen in Figure 4.6. This also 
shows how a benign subgraph can appear when it has not been isolated (as in 
Figure 4.5). As we can see in this example it is still not too difficult to make 
sense of the access requests that form this graph (nor indeed to realize that 

"̂ It should be noted that Tulip is not \ht perfect tool in this respect. After a while it becomes cost effective to 
eliminate the requests from the input data itself and restarting Tulip. In our experiment the elimination was 
performed by judicious use of the UNix tools sort, grep etc. 
^For the purpose of illustration the corresponding access requests here have been isolated to make the graph 
clearer. 
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they're all benign). For the graph in Figure 4.6: 52 access request begin with 
"02", 49 with "02/infovis", 33 with "02/infovis/literature" (and incidentally 
the "02/ubicomp" branch only contains 3 distinct access requests). Thus this 
graph contains about a third as many benign access requests as the graph in 
Figure 4.5. Unfortunately not all subgraphs that are visible in Figure 4.3 are 
of this type. As an example Figure 4.7 contains a graph that isn't very easy to 
make sense of and eliminate as benign oif hand. In this case it turns out that it 
is indeed benign, but more work has to be expended to arrive at that conclusion. 
The situation is helped somewhat by leaving the troublesome subgraphs for the 
latter stages of the analysis, when most of the simple benign subgraphs have 
been eliminated as this improves layout and reduces occlusion. 

After about one to two hours we arrive at the distilled requests that we cannot 
eliminate as benign. Since user experiments are yet to be performed on this 
method, a more precise time estimate cannot be given with any certainty. These 
requests will be discussed in more detail in section 4. 
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Figure 4.6. Zoom on feature (benign accesses forming a subgraph, in vivo) 

4. Detailed Analysis of the Features Found 
The remaining accesses were classified into two categories, suspect and 

intrusive. The reason for using a suspect class is that since this is data from 
the field and the intentions of the entity submitting the request are not known, 
it is sometimes difficult to decide whether a request is the result of an intrusive 
process, the result of a flaw in the software that submitted it or a mistake by its 
user. Also, some accesses are just plain peculiar (for want of a better word), 
and even though they are probably benign, they serve no obvious purpose. As 
the suspect class, consists of accesses that we don't mind if they are brought 
to the attention of the operator, but on the other hand, as they are not proper 
indications of intrusions, we will not include them in the experiment. 

The intrusive class was further subdivided into seven different subclasses that 
correspond to metaclasses (i.e. each of these metaclasses consists of several 
types of attacks, each of which may be a part of one or several instances of 
attacks) of the attacks that were observed: 
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Figure 4.7. Zoom on feature (benign accesses forming a not very clear subgraph) 

Formmail attacks The department was subjected to a spam attack, where 
spammers tried to exploit a commonly available web mail form to send 
unsolicited mail via our server. This type of attack stood out, with many 
different requests found. 

Unicode attacks These are attacks against the Microsoft HE web server, where 
the attacker tries to gain access to shells and scripts by providing a path ar­
gument that steps backward (up) in the file tree and then down into a system 
directory by escaping the offending "\ . . \" sequence in various ways.^ IIS 
protects against this attack by first checking the URL for the "\ . . \" char­

acter sequence, or repetitions thereof, and disallowing the access if found. 
However, it is possible to trick IIS into allowing such sequences by escap­
ing the offending backslash character, and send an URL that contains e.g. 

^See e.g. "http://builder.com.com/5100-6387_14-1044883-2.html". 

http://builder.com.com/5100-6387_14-1044883-2.html
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"\..%255C..\". IIS will not consider this URL "dangerous" since it does 
not explicitly contain the parent directory character sequence. However, IIS 
will then proceed to interpret the escape sequence in two steps (in violation 
of the HTTP RFC) as consisting of first "\..%5C..\" and then finally as 
"\ . . \ . . \" since the hexadecimal representation of the ASCII codes for "%" 
and "\" are 0x25 and 0x5C respectively. Many variations on this scheme 
are present in the log data. 

Proxy attacks The attacker tried to access other resources on the Internet, such 
as web servers or IRC servers via our web server, hoping that it would be 
misconfigured to proxy such requests. We suppose that this is an attempt to 
either circumvent restrictive firewalls, or more likely, to disguise the origin 
of the original request, making tracking and identification more difficult. 

Pathaccess attacks These are more direct attempts to access command inter­
preters, cgi scripts or sensitive system files such as password files. A major 
subclass here is trying to access back doors known to be left behind by other 
successful system penetrations (by worms for example). Also configuration 
files of web applications (e.g. web store software) was targeted. Attempts 
to gain access to the configuration files of the webserver itself were also 
spotted. These attacks are all different from the Unicode attacks above in 
that no attempt at obscuring the access request was made. These attacks 
rely instead on the web server being installed (or previously subverted) to 
incorrectly provide access to these resources. 

Cgi-bin attacks Attacks against cgi scripts that are commonly available on 
web sites and may contain security flaws. We believe the availability of 
several cgi script security testing tools to be the reason for the variety of 
cgi probes present in our data. Although the the formmail script probed 
for above is technically a cgi-bin attack, those invocations of the script that 
tried to send email as a probing attack (evident from the subject and recipient 
fields) were classified as ?i formmail attack and those that only probed for 
the presence of the formmail script were classified as a cgi-bin attack. 

Buffer overrun Only a few types of buffer overruns were found in our log data. 
All of these are known to be indicative of worms targeting the Microsoft 
IIS web server. They are easily identifiable from the prefix of the path, their 
length and from the fact that they contain long runs of the same character 
("A" or "N" respectively). 

Mise This class contains seven accesses we are fairly certain are malicious in 
nature, but which don't fit in any of the previous classes. They are various 
probes using the OPTIONS request method, and a mixture of GET and POST 
requests that target the root of the file system. Searching available sources 
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it has been impossible to find any description of exactly which weaknesses 
these requests target. 

The intrusive class (minus tho formmail attack in Figure 4.4) is depicted in 
a two dimensional flat graph in Figure 4.8 and the three dimensional graphs 
we are accustomed to in Figure 4.9. We directly see a few security relevant 
features (i.e. features that stand apart from benign accesses). One such feature 
is the "system32'V"command.exe" tail in the lower middle of Figure 4.8. 
This tail is common to many different branches from one of the roots of the 
graph and turns out to be a strong indicator of the Unicode attack discussed 
above. Another peculiar cluster is at the top, second from the left, and it turns 
out to be instances of the meta class proxy attacks. 

As we can see from the graphs there are many variations on the basic IIS 
encoding attack being tried against the server, although the graph of course 
does not list the actual attacks themselves. It would be interesting to study to 
what extent the graph predicts (all/most) possible attacks (i.e. by following one 
branch from the root to a leaf, do we get an executable attack that is not present 
in the log file proper). The overflow attacks are simple buffer overruns against 
fixed length buffers without adequate overflow protection, in our case these take 
the form of very long components (formed of a string beginning with repetitions 
of the character "N" or "A") followed by escaped shell code. Searching security 
sources we find that the first of these is characteristic of the Code Red worm. 

We will discuss the structure of these attacks in section 6, but for now it 
will suffice to note that the attacks often come with a tail attached. The reason 
seems to be that attacks that show some diversity nevertheless share common 
features that may come at any position in the request, while this is not true for 
normal accesses. In the case of Unicode attacks we see it is the "payload" i.e. 
the commands that the attacker wishes to execute that show many similarities, 
greater similarities in fact than the encoded path that leads to it However, despite 
this structure apparent in the attacks, comparing e.g. Figure 4.5 to Figure 4.8 
indicates that the visualization method is better suited to eliminate benign re­
quests than to detect malicious requests. Which is just as well given that there 
are many more benign requests than malicious ones; and in fact i\\t false alarms 
suppression capability of an intrusion detection system determines its effective­
ness [AxeOOa]. 

5, Effectiveness of the Log Reduction Scheme 
In order to evaluate the effectiveness of the log reduction scheme we analyzed 

the entire 220000 unique web requests by hand. 
The access requests were classified into the three categories: normal, intru­

sive and suspect as before. Furthermore the intrusive class was divided into 
the seven subclasses discussed earlier. This further subdivision benefits the in-
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Figure 4.8. The remaining accesses deemed to be intrusion attempts, 2D graph 
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Figure 4.9. The remaining accesses deemed to be intrusion attempts, 3D graph 
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vestigation of the effectiveness of the log reduction mechanism since it avoids 
reporting results that might indicate an overall satisfactory detection rate, but 
on closer study turn out to be lacking in detection capability in any of the seven 
areas7 A summary of how many of the different classes of attacks the log 
reduction mechanism detected can be found in table 4.1. 

Instances of the class suspect are not considered false alarms when they 
occur in the output of the log reduction tool, but on the other hand will not be 
considered missed attacks when they do not. 

Attack 
Formmail 
Unicode 
Proxy 
Pathaccess 
Cgi-bin 
Buffer overrun 
Miscellaneous 
All attacks 

Total 
285 
79 
9 

71 
219 

3 
7 

673 

Alarms 
282 

79 
5 

16 
17 
2 
2 

403 

Detection rate (%) 
99 

100 
56 
23 

8 
66 
29 
60 

Table 4.1. Detection rates of the log reduction mechanism 

As we can see in table 4.1, the log reduction mechanism faired well, it 
managed to preserve evidence of all seven classes of attacks in the reduced 
log. In light of these results we would not hesitate to claim the log reduction 
mechanism a success from the point of view of detection rate, even though it 
did not do spectacularly well in all classes, especially in the classes that were 
most similar to normal traffic, which is only to be expected. 

The discussion of false alarm rates is complicated by the fact that anomaly 
detection is not actually done, but log reduction. The difference is that an 
anomaly detection system reports on the absolute abnormality of a request, 
while the log reduction system reports on the relative abnormality of a request. 
The corresponding anomaly detection system would produce a variable number 
of alarms indicating the level of intrusive activity, but the log reduction scheme 
will always report the same number of "alarms" regardless, as a suitable number 
of "alarms" are selected to perform visualization on. Thus the notion of false 
alarm rate is not well defined in this context (see Chapter 4). 

Table 4.2 below lists the absolute values of the number of attacks, normal 
traffic and suspect traffic that are evident in the whole data set and in the reduced 
log. As might have been expected the number of benign accesses in the reduced 

^This might well have been the case since the distribution of different accesses in each of the seven subclasses 
turns out to be highly skewed and so doing well in one class would skew the overall result. 
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log is quite high. Circa 86% of the reduced log contains benign traffic. (Note 
that this number would not correspond to i\\t false alarm rate, but rather the 
Bayesian false alarm rate as defined in Chapter 4. The true false alarm rate 
would be even higher.) This is acceptable since the number of accesses are 
kept within reasonable limits for the chosen visualization method and the log 
reduction mechanism has a sufficiently high detection rate. 

Access type 
Attacks 
Normal traffic 
Suspect 
Total 

All accesses 
673 

215504 
115 

220000 

Alarms 
403 

4499 
28 

5200 

Table 4.2. Summary of the true and false alarms of the log reduction mechanism 

Note that it is pointless to compare the results from the system presented 
here with that of popular signature based systems such as Snort [Roe99], since 
these rely on previous external knowledge of intrusions. There is unfortunately 
a dearth of suitable publicly available anomaly detection systems with which 
to compare the results, though that would be more useful. 

6. Discussion 
How does the present method compare with spending the same amount of 

time going through a false alarm list from an intrusion detection system? This 
is of course difficult to answer, but one could argue that with the visualization 
approach the user has spent time actually learning about the type of traffic the 
webserver sees, knowledge that can be used to make the site run better/smoother. 
This is not generally the case when watching the output of an intrusion detection 
system. 

This generalized knowledge—patterns that are distinct from benign traf­
fic have been found, no benign traffic contains the kind of encoding that the 
encoding attacks does—can of course be used to program a signature based in­
trusion detection system. We conjecture this approach would work well, since 
site-specific knowledge helps to identify what parts of these intrusions that are 
unique to attacks and do not occur in normal traffic to that site. When perform­
ing intrusion detection the best results are achieved when there is a model of 
both the normal and the intrusive traffic [LXOl]. At the very least this knowl­
edge can be used when tuning a signature based intrusion detection system, 
something which is always necessary. 
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The anomaly based log reduction system faired well, and it is believed that 
it would furthermore be difficult to try to circumvent it by injecting similar 
fields in other fake access requests to try and drive up the frequencies of the 
interesting fields. This is because such accesses would by their very nature not 
be successful either as attacks, or as access requests. Taking the result code 
(i.e. 404) into account when performing the log reduction would eliminate these 
fake accesses. This would perhaps come at the cost of a decreased detection 
of attempted intrusions. This could be addressed by looking at access requests 
that were either successful, or unsuccessful, or similar access requests, some 
of which were successful and some of which were not. Any "chaff' - access 
requests by their very nature must be unsuccessful - are distinguishable from 
other access requests (either benign or malicious), and that can be put to work 
for detection. 

On a different tack, we can amortize the cost of going through the unique 
requests. When we look at the logs for the three months following our November 
log, we see that they make on the order of the same number of unique requests 
in themselves, but that many of these requests are similar to the ones in the 
November file. Table 4.3 lists the number of previously unseen requests for the 
months following November. Studying the requests themselves, many of these 
only differ in a single component compared to their November counterparts, 
and are easily dispensed with. Thus the number of unique requests we have to 
process decreases nicely as we learn more and more about our particular web 
server. If one has encoded the knowledge of uninteresting subtrees and patterns 
that were discarded in previous investigations, then this number can be reduced 
even further. It would be interesting to investigate how these requests should 
be visualized to maximize the benefits of this amortization process. 

Month 
November 
December 
January 
February 

New access requests 
200000 

87000 
66000 
40000 

Table 4.3. Number of previously unseen (new) accesses for the following months 

Empirically in our data set the uninteresting access patterns are almost with­
out fail very treelike in appearance, with no common tails to speak of, while 
the opposite is true for the attacks. The reason seems to be that attacks that 
show some diversity nevertheless share common features that may come at any 
position in the request, while this is not true for normal accesses. In the case 



Discussion 65 

of the encoding attacks against IIS that we see it is the "payloads" i.e., the 
commands that the attacker wishes to execute, that show many similarities— 
greater similarities in fact than the encoded path that leads to it. In the case of 
the spam attacks, it is the stereotype message delivered that is the key to the 
late similarities. We conjecture that this would probably be difficult to avoid 
for both types of attacks, there are only so many different commands to execute 
with the desired effect, and only so many file system paths to get to them, so 
there is bound to be a bottleneck (where the paths converge to a smaller set, 
and the command set starts), giving the characteristic hour glass shape. In the 
case of the spam attack the attacker could randomize the message as well, but 
that would not elicit the same response from the recipient (human provoked 
responses are the best indication of a 'live' address the would be spammer 
could hope for). As there are only so many short sensible messages available, 
the attacker would either have to generate them by hand, in which case there 
wouldn't be as many (as the randomly generated addresses at least), or try and 
generate them automatically, again leading to less diversity. So the hour glass 
shape is likely to occur in one form or another there as well. On the other 
hand the access to static legitimate web pages is of course highly tree-like in 
nature, and hence does not elicit the same hour glass shape. Cgi-bin arguments 
show more variation, but they don't in our experience contain the same clearly 
identifiable tails as the attack patterns. In one example, the case of a collec­
tion of scripts for conducting surveys of student opinion for courses taken, the 
text of the messages, while sharing many words between different opinions, 
still display much more variation, giving an almost random appearance, not 
the typical hour glass shape of the suspect patterns. However, not all attack 
patterns show this hour glass shape. The attacks with very little variation in the 
attack types do not provide enough data for the pattern to emerge. It should be 
noted that being subject to a large number of different variations of the same 
kind of attack increases the possibility of the attack being detected with our 
scheme, since there is more structure apparent. The opposite is typically true 
of signature based intrusion detection systems have been programmed to detect 
one type of attack (or at least a smaller range of attacks). Diversity in attack 
method is good from our perspective. 

A disadvantage with this approach compared to that of automated intrusion 
detection systems is that the detection is not necessarily real time or near real 
time. Especially if is decided to visualize the log in batches of one month at 
a time. Of course, nothing prevents the operator from performing the visu­
alization more often. The methods developed here must be modified for this 
to work though, as we depend to some extent on having diversity available to 
visualize, diversity that may not be present in the shorter run. Some form of vi­
sualization of the differences between what we have seen previously and what is 
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new since then must be studied. This problem is analogous to the amortization 
visualization mentioned earlier. 

7. Future Work 

The discussion has been limited to the types of different attacks seen in the 
web log (the same request string could emanate from many different sources). 
No attempt has been made to correlate the actual attacks with each other, or 
cluster the same attacks originating from different sources to try and identify the 
entity behind the attacks. Methods to do so already exist, and a visual method 
is discussed in Chapter 7. 

It would be interesting to devise methods of evasion as noted above, and 
implement the suggested improvements to the log reduction to thwart them. It 
would also be interesting to devise user experiments. These are more difficult 
than one might at first think, since training on the specific tool often is very 
effective for the outcome, and the task to be performed is complex and demands 
some skill. This makes the experiment prohibitively costly. 

8, Conclusions 

In summary, the hypothesis that the combination of anomaly based log re­
duction and visualization would provide us with the benefits of both approaches 
while counteracting the drawbacks was supported. Furthermore the anomaly 
based log reduction system could indeed be very simple and still successfully 
serve as a front end to the visualization system. The hypothesis that visualizing 
the structure of the requests strings themselves cut into components would en­
able the operator to discard benign accesses with relative ease was supported. 
There was less evidence for the corresponding hypothesis: that one could just 
as easily identify malicious patterns. A few meta classes of attacks did ex­
hibit features that set them apart from the benign traffic, but others did not to a 
significant degree. 

The presented method is relatively time efficient, and the operator learns 
about the usage of the website. Notably unusual but benign (often dynamic) 
traffic that is more varied and hence more prone to misclassification is studied 
in more detail. 

The work invested in parring down the graph can be amortized over subse­
quent investigations, where the webserver logs for the following months contain 
less and less new traffic, and hence can be visualized more quickly, especially 
if one remembers what accesses were seen previously and why it was decided 
to discard them as uninteresting. 
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9. Further Reading 
There has not been much research into anomaly detection of web accesses 

besides that by Kruegel et.al. [KV03]. They develop (as is done here) ad hoc 
statistical methods for detecting anomalous request strings. Their model is 
much more complex than the one presented here, taking many more parameters 
into account while only one (the element frequency) is taken into account here. 
As a result—as far as false alarm rates can be compared between a detector and 
a log reducer—they are rewarded with a false alarm rate about a factor of forty 
lower than the one reported here (and possibly a detector that is more resistant 
to evasion attempts). Even so the authors report a problem with handling even 
this level of false alarms, while the visualization method presented here enables 
the user to quickly discard the uninteresting entries. 



Chapter 5 

COMBINING A BAYESIAN CLASSIFIER WITH 
VISUALIZATION: UNDERSTANDING THE IDS 

In this chapter^ we aim to develop an intrusion detection system to help 
the expert quickly and accurately identify false and true alarms. We aim for 
the expert user as it should be noted that the operator of any intrusion detection 
system must have a rudimentary understanding of the assets that need protection 
and common ways of attacking said assets. 

In order to investigate this approach a prototype tool was developed where 
the state of a Bayesian classifier is visualized to further an understanding, by 
the operator, of exactly what the intrusion detection system is "learning", and 
how that affects the quality of the output-e.g. in the form of false alarms. To 
ascertain the effectiveness of the approach, an empirical study of the access 
requests made to a fairly large public webserver was made, using the same data 
studies in the previous chapter. 

!• Automated Learning for Intrusion Detection 
We have implemented an automated learning intrusion detection system that 

for the sake of accuracy builds a model of both benign and malicious behavior. 
Automated learning can be roughly divided into two major groups, supervised 
and unsupervised. Most anomaly based intrusion detection systems fall into 

the latter category, i.e. they automatically find clusters or other features in 
the input data and flag outliers as anomalous. Relatively little investigation 
in intrusion detection system research has been into the area of supervised 
automated learning systems, [Pro03] being one exception. 

Major problems with all self learning systems are the issues of over training, 
i.e. where the system gains a too specific knowledge of the training set, which 

^This chapter is a revised and extended version of [Axe04a]. 
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prevents it from correctly generalizing this knowledge given slightly different 
stimuli, and under training where the system has really seen too few examples 
on which to base any well founded decision about later stimuli but still classifies 
as if it had. A goal of our approach is that the visualization of the inner workings 
of the intrusion detection system will let the operator easily detect instances of 
over and under training, so as to be able to deal with them interactively. 

2. Naive Bayesian Detection 
We have chosen to implement an intrusion detection system based on the 

principles of Bayesian filtering in the same vein as now popular spam filtering 
software, popularized by Paul Graham [Gra02].^ 

These simple classifiers operate as follows: first the input is divided into 
some form of unit which lends itself to being classified as either benign or 
malicious (in spam classifications typically a piece of email is considered), this 
unit of division is denoted a message. It is the responsibility of the user to 
mark a sufficient number of messages as malicious/benign beforehand to effect 
the learning of the system. The system is thus one of supervised self learning. 
The message is then further subdivided into tokens—in an email typically the 
words of the text that makes up the email and various elements of the header. 
The tokens are scored, such that the score indicates the probability of the token 
being present in a malicious message, i.e. the higher the relative frequency of the 
tokens occurrence in malicious messages, relative to its occurrence in benign 
messages, the more indicative the token is of the message being malicious. The 
entire message is then scored according to the weighted probability that it is 
malicious/benign, given the scores of its constituent tokens. 

One can parameterize the scoring of the tokens in a number of ways. We 
have chosen a simple method that closely follows Paul Graham's presentation: 

Let the total number of benign messages seen thus far be denoted by good, 
and the total number of malicious messages be denoted by had. Furthermore let 
the number of times the token has appeared in benign and malicious messages 
be denoted by g and h respectively (i.e. if it has appeared twice in the same 
malicious message that is counted as two occurrences). Then the score of 
the token is calculated as: scove — b/bad-\-g/good' ^^ both b and g are zero 
then score = 0.5, i.e, if we have not seen the token before, then it is given 
a neutral score of 0.5, meaning that it is indicative of neither a benign nor 
a malicious message. The tokenscore is furthermore restricted to the range 
[10~^, 1 —10~^], to prevent division by zero when the entire message is scored. A 
token is thus never considered perfectly indicative of a benign nor a malicious 

^It should be noted that this rudimentary form of Bayesian learning should not be confused with Bayesian 
learning network algorithms such as employed by the intrusion detection system eBayes [VSOO]. 
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message, even though the scores will be referred to as 2i perfect 0.0 or 1.0 for 
clarity in the remainder of the chapter. It should be noted that one does not 
actually mark tokens as being benign or malicious, only messages. The score 
of the tokens is inferred from the number of times it occurs in benign and 
malicious messages.^ 

The entire message is scored according to the following formula: 

n n n 

Pmalicious ^ Y[Pi/{YlPi + Yl(^ " P'^'>'> 
1=0 i=0 i=0 

where n is the number of tokens in the message and p i , . . . Pn are the respective 
scores of the tokens. 

So the score of the message (i.e. probability the message is bad) is the 
weighted probability of the probabilities that the tokens the message consists 
of are indicative of a bad message. 

In order to apply this principle to an intrusion detection system, one would 
typically present it with examples of malicious and benign activity and then 
when the system is trained, present it with unknown input, flagging all messages 
that scored higher than a set threshold score as intrusive. A more elaborate 
approach is taken here as will be seen in Section 4. 

3. The Experimental Data 
For the experiment, we have chosen to study a webserver access log as 

described in Chapter 4, page 49. 
Even though the choice was made to study webserver logs the longer term 

aim is that the general approach developed here should generalize to other 
monitored systems. It should be noted that the tool is agnostic in this respect, 
placing few limitations on the form of the input data."̂  

As mentioned in Bname, there is a dearth of publicly available corpora 
suitable for intrusion detection research, and the de facto standard, based on 
the Lincoln Labs intrusion detection system evaluation [LGG+98] (despite its 
flaws [McHOO]), is unavailable to us as it is export controlled. Other publicly 
available data such as the Defcon Capture the Capture-the-Flag data is not ana­
lyzed, and hence it is difficult to base any investigation into the hit/mis-rates of 

^As the dependent probability is never actually calculated (due to efficiency concerns, we would then have 
to consider the new token given the probability of all preceding tokens, which would lead to a state space 
explosion) calling this method Bayesian is a bit of a misnomer but is standard nomenclature. 
"̂ That said, lower level, more machine oriented logs may not be the best application of this method. Even 
when converted to human readable form they require detailed knowledge of e.g. protocol transitions etc. Of 
course, fundamentally the logs have to make sense to someone somewhere, as any forensic work based on 
them would otherwise be in vain. Another problem is that of message sequences where the sequence itself 
is problematic, not one message in itself as the Naive Baysian classifier does not take the order of tokens 
into account. 
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an intrusion detection system (or train an intrusion detection system) on it. The 
same is true of anomaly based systems with which to compare our results. We 
feel it would be pointless to compare our approach to a signature based system 
e.g. Snort ("http://www.snort.org") because it relies on external knowledge 

in the form of intrusion signatures that a human analyst, external to the system, 
has provided. 

The university departmental webserver under study was running Apache 
version 1.3.26. It was set to log access requests according to the common log 
strategy. The log thus consists of a line based text file with each line representing 
an single HTTP access request. The fields logged were originating system (or 
IP address if reverse resolution proves impossible), the user id of the person 
making the request as determined by HTTP authentication , the date and time 
the request was completed, the request as sent by the client, the status code (i.e. 
result of the request), and finally the number of bytes transmitted back to the 
client as a result of the request. The request field is central. It consists of the 
request method ("GET", "HEAD", "CONNECT", etc), followed by ihtpath 
to the resource the client is requesting, and the method of access ("HTTP 1.0", 
or "HTTP 1.1" typically). The path in turn can be divided into components 
separated by certain reserved characters [FGM+99] . 

Recall again from Chapter 4that the log for the month of November 2002 
has previously been studied in detail. The resulting access log contained circa 
1.2 million records. Cutting out the actual request fields and removing dupli­
cates (i.e. identifying the unique requests that were made) circa 220000 unique 
requests were identified. It is these unique requests that will be studied in the 
rest of the chapter. 

The reason the unique types of requests are studied instead of the actual 
request records is that we are more interested in the types of attacks that are 
attempted against us than the particular instance of the attack. This provides 
a degree of generalization even in the setup of the experiment as there is no 
risk of learning any irrelevant features that are then (perhaps) difficult to ignore 
when trying to detect new instances of the same type of attack later. Note that 
an entity, e.g.. a worm, that lies behind an actual attack often uses several types 
of attacks in concert. 

Chapter 7describes a method for correlating attacks against webservers to 
find the entity behind them when one already knows of the particular attack 
requests being made. It should be noted that no detection capability is lost 
in this way, since knowing the type of attack being performed it is trivial^ to 
detect the instances later, should one chose to do so. The choice was made to 

^The one type of attack that we can think of that would not be detectable is a denial-of-service attack making 
the same request over and over. Since this would be trivial to detect by other means this is not seen as a 
significant drawback. 

http://www.snort.org
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ignore the result code as many of the attacks were not successful against our 
system, and the result codes clearly demonstrated this. Ignoring this information 
actually makes our analysis more conservative (it biases our analysis toward 
false negatives). 

Not all possible attacks against web servers would leave a trace in the ac­
cess log, e.g. a buffer overrun that could be exploited via a cgi-script accessed 
through the POST request since the posted data would not be seen in the access 
log. Unfortunately the raw wire data was not available; there is nothing really 
preventing the use of the intrusion detection system on that data, after some post 
processing. It should be noted however, that few current attacks (targeting web 
servers that is) are of this type (see Chapter 7) and that there were a multitude of 
attacks in the access log data with which to test the intrusion detection system. 

4. Visualizing a Bayesian IDS 
An important problem with self learning systems is that they can be opaque 

to the user of the system, i.e. it is difficult for the user to ascertain exactly what 
has been learned and hence to judge the quality of the output. The problems of 
not really having the human in the loop when making decisions using decision 
support systems has been noted in human-machine interaction circles for some 
time [WH99, RDL87]. The operator that does not have a relatively correct (or 
at least consistent) mental picture of the state of the machine he or she is inter­
acting with will not perform well, probably resorting to ignoring the system he 
is put to monitor. This problem has also affected anomaly detection systems 
before, where several systems tested on the Lincoln Labs data (discussed in 
section 3) seemed to operate well within parameters, but in fact picked up on 
idiosyncratic differences between the malicious and benign examples in the 
synthesized data instead of features that would hold were the systems subjected 
to realistic data [MC03]. It is possible that this effect would have been discov­
ered sooner had the actual learning done by the systems been more accessible 
to the operators. 

The problem is further complicated in the case of intrusion detection because 
of the base-rate fallacy described in Chapter 3, i.e. that most alarms will tend not 
to be a true indication of malicious activity unless the intrusion detection system 
has a very low false alarm rate. Hence the correct identification of false alarms 
is crucial for the operational effectiveness of an intrusion detection system. 
Bayesian self learning systems are not immune to these problems if employed 
in a naive fashion, i.e. when the system is trained in a "batch" fashion, where it 
is first presented with several examples of intrusive behavior and then several 
examples of non-intrusive behavior, to finally be applied to unknown input, 
delivering only (in the worst case) alarm/no alarm as output to the operator. A 
natural improvement is to display the score to the operator, but in practice this 
is only slightly more helpful. As anecdotal evidence we submit the following: 
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when the author first started using the Bayesian spam filter recently added to the 
Mozilla C'http://www.mozilla.org") email client, the filter seemed to learn the 
difference between spam and non-spam email with surprisingly little training. 
It was not until some rather important email was misclassified as "spam" that 
it was realized that what the filter had actually learned was not the difference 
between spam and non-spam, but between messages written in English (by the 
second author) and the first author's native tongue. In fairness given a few more 
benign examples of English messages the system was successfully retrained and 
was again correctly classifying email, but some rudimentary insight into exactly 
what the system had learned would have made us more skeptical of the quality of 
the classification, even though the classifier seemed to operate perfectly judging 
by the output. 

To that end a (prototype) tool named Bayesvis was implemented to apply the 
principle of interactivity and visualization to Bayesian intrusion detection. The 
tool reads messages as text strings and splits them up into the substrings that 
make the tokens. In the first version of the tool URL access requests make up 
the messages, and they are split according to the URL field separating characters 
(; / ? : 0&=+, $) but with little modification the tool could accept any input data 
that lends itself to being split into messages (perhaps marking sessions) and 
tokens according to its textual representation. Figure 5.1 is a screen dump of 
the user interface of the tool. 

The learning that is performed by a Bayesian system of the kind modeled 
here, is encoded in the score of the tokens the intrusion detection system uses 
to score the messages. Therefore the scores of the tokens are visualized as their 
textual representation (black text) on a heatmapped background [TufOl]. A 
heatmap maps a real number (in our case the probability of the token being 
indicative of a malicious message, i.e. p = [0,1]) to a color on the color wheel, 
from green via yellow to red that is, the hue of p—in HSV coordinates—is 
mapped onto the range [180^, 0^], fully saturated, and as close to the whitepoint 
as possible. The total score of the message is visualized in the same manner 
and also an indicator of whether the user has marked this message as benign 
or malicious.^ One would think that color blindness could be a problem in 
accessing our visualization (some two to eight percent of all males suffer from 
defective color vision depending on the group under study—impaired color 
vision is relatively more common in academia for example), but it turns out that 
making a simple modification; mapping onto the 'right' half of the color wheel, 
from green to red via blue, instead of via yellow, will make the presentation 

^Unfortunately the human eye is much better at discerning between different colors than levels of gray, so 
a gray scale mapping for the purpose of this presentation is less effective at conveying the nature of our 
visualization. It is suggested that the figures be viewed in the on-line, color version. 

http://www.mozilla.org
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Figure 5.1. The Bayesvis tool 

accessible to a large percentage of those that suffer from the common forms of 
red-green color blindness [TufOl]. This variation is not yet implemented. 

Once the user has visual access to the internal state of the classifier, and hence 
can start to form an opinion of the learning process, it is tempting to let the user 
interactively guide the learning process, in our case by marking messages on 
screen as either malicious or benign. In order for this to be practical, the 
experience must be seamless; ideally the user should not experience any delay 
between her action and the time the result is displayed on the screen. With a 
few notable exceptions this requirement has been met and the updating of the 
state of the messages is instantaneous on reasonably current hardware. 

In order to present the ideas embodied in the prototype we give a quick 
presentation of the user interface, as user interaction is its raison d'etre. The 
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user interface can be divided into a few major groups roughly corresponding to 
the controls from top left to right, top to bottom in Figure 5.1. 

Saving/loading Via the file menu, the user can save and load a session, but 
more importantly append new messages (imported as text files) to the end 
of the current session. The user can also clear the actual messages from 
the current session, but keeping the tokens and their scores. This enables 
the user to append new data for classification, without having the display 
cluttered by the training data. 

Marking messages The main window of the display lets the user select mes­
sages by left clicking on them,^ and marking them as either good, bad, or 
neutral. By default the messages are marked as neutral when first imported. 
The display is divided into three columns. The first contains a marker that 
display the state of the message: 0.0,0.5 and 1.0 depending on the message 
being marked good, neutral or bad respectively on a heatmapped back­
ground. The intended mnemonic is the score the resulting tokens would 
have, were they part of only one message of the indicated type. The second 
field is the Bayesian score of the message (also on a heatmapped back­
ground), indicating the relative ''badness'' of the message as a whole. The 
third column fills the rest of the horizontal screen estate and consists of a 
heatmapped display of the tokenized message. The characters that separate 
the tokens, and hence are not part of the scoring process (they have no score 
of their own) are also displayed, but on a white background. This serves 
to separate the heatmapped tokens from each other visually, and to provide 
the original data, without fooling the user into thinking that the separating 
characters are somehow part of the detection process. The user can choose 
to display the actual scores of the tokens in curly braces after the tokens 
themselves. 

Sorting The user can opt to sort the messages alphabetically (optionally in 
reverse order), but perhaps more interesting is the ability to sort according 
to message score. Since this tool provides a visual display of the scores in 
descending order, a cut-off score as in an anomaly based intrusion detec­
tion systems has not been implemented. Instead users can sort messages 
according to score and view them in order, deciding for themselves when an 
uninteresting level has been reached. The last sorting option is the option 
to sort according to the marking of the messages, with the ordering good 
< neutral < bad. This is useful during a training or scoring session to 
quickly find misclassifications inxxmisclassification (messages with a good 

^A range of messages can also be selected by click dragging or shift clicking, which is useful when we are 
training the system on a large corpora of already know malicious accesses as we are in this paper. 
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(green) score that one has marked bad (red) will stand out visually among 
the correctly classified messages). The sorting functions in general and the 
sorting of scores in particular are exceptional in that they do not provide an 
instantaneous response like the other functions of the system - although the 
response time is still reasonable. 

Searching At the bottom of the screen is an ordinary sequential search function. 
More interesting is the skip capability used for skipping similar messages, 
especially when dealing with semi tree like data as is done here. 

In Figure 5.1, a few examples of bad and good access requests have been 
loaded. The user has marked three malicious requests as malicious (which can 
be seen in the left most column) and one request as benign. As a result all 
malicious requests have been correctly classified as malicious (they all have a 
perfect 1.0 score), and most of the benign requests have been marked as benign. 
A few toward the bottom of the page still have a high score (having a score of 
0.692), and the next step would be to mark the first of them as benign and 
see how that would influence the rest of the misclassified requests. Figure 5.2 
displays the Bay es vis after this update has been made. 

It is interesting to note that had a batch oriented system been trained with 
these examples and just the scores been observed we could well have been 
pleased thus far as all the other benign requests have a perfectly benign score of 
0.000. However, when looking at the heatmap of the tokens of the last requests 
it becomes clear that the reason behind this is the token "1.0" which receives 
the perfect 0.0 score, and this dominates the score of the request as a whole. 
As it happens, in the requests upon which the system was trained the token 
"1.0" appears once, in a good message, and never in a bad message, and this 
serves to give it a perfectly benign score. As the system has never seen any of 
the other tokens in the requests they default to a score of 0.5, which is to say 
that they are not indicative of anything. To the human analyst using the tool, it 
is abundantly clear that the last requests here are correctly classified more by 
coincidence than anything else. The system does not really have enough input 
yet to say with any reasonable degree of certainty that these requests are benign, 
and more training is called for. Figure 5.3 shows Bayesvis after the first of the 
under trained accesses have been marked as benign. 

Contrast this training of benign requests with the malicious requests. As it 
happens just marking the first request in Figure 5.1 correctly classified all the 
malicious requests. In this case it is because of the tokens of the pay load, i.e. the 
tail of the request that tries to execute a command interpreter on MS Windows 
operating systems (see section 5 for more details of this type of attack). A 
few more requests were marked to increase the level of training of the tokens 
that precede the payload. In this case it is quite apparent to the operator that 
the detection is of a higher quality given the training set, since the tokens that 
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Figure 5.2. The Bayesvis tool after retraining on false alarms 

are marked are quite significant given the type of flaw that is being exploited. 
In this small example, the strengths and weaknesses of the learning process 
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Figure 5.3. The Bayesvis tool after having corrected under training 

become visually apparent, and the operator can respond interactively to correct 
the instances of under training seen, in doing so receiving immediate feed back 
(click-by-click literally) and taking into account the new state of the intrusion 
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detection system, before performing additional updates. This would not be true 
of a more traditional intrusion detection systems working along the same lines. 

Figures 5.1,5.2, and 5.3 contain more information as to under and over train­
ing, such as the benign indication for the "1.0" token on some of the malicious 
requests and the continued malicious indication for the "1.1" token. Unfor­
tunately the static nature of a written presentation, prevents of from providing 
more insight into the interactive nature of this process than possible here^ 

5. The Training Datâ ^ 
We previously sifted thorough the November 2002 access log by hand, clas­

sifying each of the 216292 unique access request for the purpose of intrusion 
detection research. 

It was decided to classify the accesses into two categories, suspect and in­
trusive. The reason for using a suspect class is that since this is data from the 
field, and we do not know the intentions of the entity submitting the request, it 
is sometimes difficult to decide whether a request is the result of an intrusive 
process, the result of a flaw in the software that submitted it, or a mistake by its 
user. Also, some accesses are just plain peculiar (for want of a better word), and 
even though they are probably benign, they serve no obvious purpose. On the 
one hand the suspect class consists of accesses that can acceptably be brought 
to the attention of the operator. But on the other hand, as they are not proper 
indications of intrusions, we accept that they may not be reported as intrusive. 

The classification of the attacks was described in detail in chapter 4. In 
summary, table 5.1 details the number of different types of access requests in 
the training data. 

6. The Experiment 
The choice was made to train the system on the November log with the 

identified weaknesses mentioned above^^ and then to evaluate the resulting 
intrusion detection systems on the logs for the following months. Examining 
the logs for the months following November, i.e. December through February, 
we note that they contain on the same order of number of unique requests in 
themselves, but it turns out that many of these requests are similar to the ones 
in the November file. However the number of accumulated previously unseen 
requests for the following months fall off nicely: November 200000, December 

^Bayesvis is available under the General Public License. 
^^These attacks are described in more detail in Chapter 4 beginning on page 49They are summarised here 
for completeness. 
^ 4t is perhaps unreasonable to assume that every operator of such a tool should do their own security 
evaluation to acquire training data, but of course nothing prevents training the system on malicious data 
made available by an external expert, much like intrusion signatures for signature based intrusion detection 
systems are typically subscribed to from an external provider. 



The Experiment 81 

Access meta-type 
Formmail 
Unicode 
Proxy 
Pathaccess 
Cgi-bin 
Buffer overrun 
Miscellaneous 
Total attack requests 
Normal traffic 
Suspect 
Total requests 

Unique requests 
285 
79 

9 
71 

219 
3 
7 

673 
215504 

115 
216292 

Table 5.1. Summary of the types of accesses in the training data 

87000, January 66000 and February 40000. In addition, studying the requests 
themselves, many of these only differ in a single component compared to their 
November counterparts, and hence ought to be easily dispensed with. Thus the 
number of unique requests that have to be processed decreases nicely as more 
knowledge about our particular web server is accumulated. As we are only 
interested in the type of attack, the system will only be tested on the reduced 
logs where previously seen requests have been filtered out.̂ ^ 

6.1 Training 
Since an interactive tool with feedback is tested, several possible strategies 

for training present themselves. A strategy was chosen that is believed to be 
biased toward detection, i.e it will result in as high a detection rate as possible 
at the cost of more false positives. The strategy is to mark all the previously 
identified malicious requests as malicious and then mark the false positives 
as benign until there are no obvious ones left. We name this strategy: Train 
until no false positives. The cut-off score for the URL is set at 0.5 (which is 
conservative), i.e. a score above 0.5 for a benign access request is considered 
a false positive. This strategy is in contrast with a strategy that would add 
more examples of benign activity by actively searching for them and marking 
them as benign, even though they may not have a score that would make them 

^^The reduction itself was performed by judicious use of the sort, uniq, and comm commands. 
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false positives in our eyes. For examples of other strategies and their merits in 
training Bayesian spam classifiers see [Yer04]. 

Figure 5.4 shows a detail of a step in the early phases of the training, where all 
the attacks and suspect accesses have been added and marked, but the operator 
has yet to perform much in the way of correcting false alarms. As seen in the 
picture, all the accesses are either yellow or red, with tokens such as GET being 
highly indicative of a malicious access. It is not difficult to realize that this 
would probably not hold for a sufficiently trained intrusion detection system, 
as the majority of all requests are GET requests. Hence, the operator starts by 
marking a few of the benign accesses (one is selected ready for marking in the 
picture). When a few accesses have been marked the operator can re-score, 
re-sort and repeat the process, until the false positive rate is at an acceptable 
level, according to the strategy described above. To give an indication, for the 
November data set it turns out that only 325 accesses need be marked before 
there are no false positives.^^ This should be contrasted with the total number 
of malicious/suspect accesses marked (673 + 115 = 788) and the total number 
of benign accesses (215504). Thus, only a small fraction of the benign accesses 
need be marked as benign for the false positive rate to reach acceptable levels 
for this data set.̂ "̂  Due to the nature of Bayesian classifiers, this does not 
result in perfect training, three accesses have a score above 0.5 even though 
they have been marked as benign as they are short and contains suspect tokens 
only. It should be noted that it is fully expected that the false positive training 
is somewhat fragile, i.e. the system will not give the benefit of the doubt to new 
access requests, that even though they are benign are sufficiently dissimilar to 
the ones marked, as the system does not have a great deal of benign data from 
which to generalize any notion of benign accesses. 

6.2 Evaluation 
The evaluation consists of erasing the training data, saving the tokens with 

their respective scores and loading the access requests for the next month. Then 
the accesses are sorted according to URL score and the URLs with a score 
surpassing our threshold 0.5 is judged for false positives, and the ones with a 
lower score for false negatives. 

^̂  We feel compelled to point out that the time taken to accomplish this task is of course trivial. If the user is 
to have any hope of evaluating the output of any intrusion detection system, then he or she should not have 
to spend more than 10 seconds per access request at the very most (probably much less) which means that 
the training would take less than one hour. 
"̂̂ Even though it is less likely that we could rely on external security knowledge for the training on benign 

data than on malicious data, as the benign data is by its nature site specific, this is not as problematic as the site 
operator must have an idea of what data the site provides. One also should not discount the possibility that 
there is some potential for crossover between benign data for different sites due to e.g. directory structures, 
templates etc. being similar for similar server software in use at different sites, and thus external benign data 
might still make useful training data. 
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Figure 5.4. False positives during the training phase 

Indeed as suspected, latter results (see Figure 5.5) show some false alarms. 
Here the visualization of the internal state of the intrusion detection system 
displays its strengths. We see that similar "~andrei" URLs have clearly been 
marked as benign some time earlier, as much of them are green, but a few 
instances of the tokens (in this case input to a cgi-script that translates phrases 
between English and Russian) must have been part of malicious accesses earlier, 
since they have a perfect score of 1.0, being thought to be highly indicative of 
malicious accesses. In this case, the majority of the URL consists of benign 
tokens, and the relatively low score (most proper alarms have a perfect score of 
1.0) makes it clear that these are in fact false alarms. As it happens, marking 
just a handful of these accesses as benign (containing the tokens: root, not and a 
few others) suffices to bring the score of these requests well below the threshold. 
This process is simplified by the instantaneous update of the display. As the 

http://HTTP.K�
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first URL is marked (bringing down the score of the not token), all other URLs 
that contain that token are immediately updated, with their corresponding total 
score. The operator then chooses the next URL that has not been affected and 
mark that one, receiving instantaneous feedback on how that affects the rest 
of the false alarms. This is a level of interactivity that (at the time of writing) 
we have not seen in any other intrusion detection system tool, though it is 
unfortunately difficult to do justice to in this presentation. 
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Figure 5.5. Examples of false alarms in February log 

A third example of the detection process is given in Figure 5.6, where the 
generalization capabilities of the intrusion detection system are demonstrated. 
Here we see several examples of Unicode attack Unicode type attacks that have 
not been seen beforehand, which is illustrated by the number of yellow (i.e. not 
previously seen) tokens. Despite this all the attacks are correctly classified as 
malicious, since they contain the typical Unicode pay load or a variation thereof. 
The intrusion detection system manages to generalize the learned detection 
capability for this type of attack (this turns out to be true for the other classes 
as well) and it is easy for the operator to convince herself that these alarms are 
genuine, as they contain several highly significant suspicious tokens. To give an 
indication of the generalization capability; in the January data alone Bay es vis 
detected on the order of 200 generalized Unicode attacks. 
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We conjecture that it would be difficult to avoid detection for this type of 
attack. There are only so many different commands to execute with the desired 
effect, and only so many file system paths to get to them, so there are bound 
to be a few significant tokens that will show up in all such attempts. We also 
believe it would be difficult to drown the operator with chaff i.e. attacks that 
looked similar on the surface but with extraneous tokens generated more or less 
at random. Since one could opt not train the system on these attacks (marking 
them neither as benign or malicious), their tokens would not pollute our token 
frequency tables and hence they would receive a much lower score than the 
true attacks as shown here. As the detector was not trained on much benign 
traffic, trying to drown the malicious tokens by injecting (conjectured) benign 
tokens would not help much either, since it would be difficult for the attacker to 
guess exactly which few of the possible tokens that signify a benign message. 
(Several recent spams try to fool the detector using this very approach). As 
this is a side effect of our training strategy, other strategies may display other 
characteristics. 

6.3 Results 

While a summary of the performance of the Bayesian detector itself fails to 
capture the interactive aspects of the intrusion detection tool, table 5.2 contains 
the approximate counts of the instances of true and false alarms and the sus­
pect accesses that were classified as benign. As the system was progressively 
retrained on the false alarms in the files in question the quality of the detection 
increased. It was always relatively easy to identify false alarms, as these typ­
ically had relatively many tokens of a benign or neutral nature, with only one 
or two indicative of maliciousness, hence the number of false alarms as seen in 
Table 5.2 does not say as much about the ease (or difficulty) with which these 
could be identified. The only exception to this rule is were the access requests 
consist of only one or two tokens in total. If these tokens happen to be part of 
a malicious request, then marking and re-scoring would not tend to change the 
status of the misclassified request as a whole, since there simply was not enough 
data to work with. If the request consists of just one biased token, Bayesian clas­
sification cannot do much. This is of course a problem for all such classifiers, 
and one that becomes readily apparent from the visualization of the requests. 
As conjectured, the detection rate was impressive, with no missed true attacks, 
though it should be pointed out that the analysis performed was not as thorough 
as that which lead to the November training data. The mis-classifications, i.e 
false negatives, that did crop up where all in the suspect class, and in line with 
the discussion in Section 5 they are not considered missed attacks. In summary 
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Figure 5.6. Generalized detection of Unicode attacks 

we have processed access logs containing close to 5 million access requests^^ 
(divided onto more than 400000 unique types of accesses) in two to three hours 
including the one hour to initially train the system (discounting the time taken to 
find the malicious examples). This time does not differ to a substantial degree 
from the time the user would have to spend on going through the output of a 
traditional intrusion detection system with similar performance as our Bayesian 
detector. 

7. Conclusions 
We have developed an intrusion detection tool based on Bayesian classifica­

tion. The tool—Bayesvis—provides the user with interactive visual feedback 
on the state of the learning process, and as such the user can both ascertain the 

^^This is a realistically sized example, though it cannot measure up to the likes of e.g. Google. 
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Month 
December 
January 
February 

Unique req. 
87000 
66000 
40000 

True alarms 
700 
560 
240 

False alarms 
20 
40 
10 

False neg. suspect 
15 
20 
10 

Table 5.2. Summary of the results of the experiment (approximate values) 

quality of the output (by viewing the process that give rise to the alarms) and 
selectively train the system until it has reached a sufficient level of learning. 

The tool was tested on our own corpora consisting of four months worth of 
access requests to a fairly large university department web server, using a Train 
until no false positives strategy. The tool proved successful. The Bayesian 
detector was somewhat successful in correctly classifying requests as intrusive 
or benign, and the visualization made the limitations of the detector and the 
training readily apparent to operator who could evaluate the quality of the output 
and re-train the intrusion detection system interactively as necessary. One user 
of the tool could well handle logs containing close to five million access requests 
in the same amount of time it would take the operator to process the output of 
a traditional intrusion detection system, with the added benefit of being able to 
easily and interactively tune the intrusion detection system. 

Furthermore, the training itself proved to not be unreasonably time consum­
ing if one discounts the time taken to identify malicious examples to train the 
system on, a task that can be carried out by external experts and amortized 
over several installations as is the case with signature based intrusion detection 
systems today. 



Chapter 6 

VISUALIZING THE INNER WORKINGS OF A 
SELF LEARNING CLASSIFIER: 
IMPROVING THE USABILITY OF 
INTRUSION DETECTION SYSTEMS 

1. Introduction 

Current intrusion detection systems are difficult to use. The more advanced 
systems apply machine learning principles to help the user avoid manual labor 
e.g. in the form of having to write intrusion signatures. However, the more 
advanced such systems become, the more opaque they become. By opaque we 
mean the difficulty with which the user can discern what the system is doing. 
With such self learning systems it becomes very difficult for the user to correctly 
judge the quality of the output of the system, e.g. by correctly identifying false 
alarms [WH99]. As false alarms can be the constraining factor for intrusion 
detection (see Chapter 3) this is an important problem. 

In the preceding chapter we described a visualization method for the state 
of a self learning intrusion detection algorithm, to lend the user greater insight 
into what the system was learning. This aim includes, for example, helping 
the user detect instances of over training and under training, and enabling the 
user judging the veracity of the output of the system. However, the algorithm 
visualized then had several shortcomings: it was a relatively simple algorithm 
that does not take the order or context of tokens into account. For example, the 
classifier cannot learn that the tokens "A" and "B" in isolation are indicative 
of a good context, but that the tokens 'AB' in conjunction are indicative of a 
bad context. To address these shortcomings and to see whether visualization 
methods could be successfully applied to a more complex classifier, with a 
more complex state to visualize, we describe an IDS prototype based on a more 
complex and capable classification algorithm. 

The detector was applied to two corpora of data: our own, consisting of web 
server access requests, and a subset of a data set with system call traces. We 
also compared the detector to the less advanced one described in the previous 
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chapter. The detector performed well enough for the purpose of demonstrating 
the visualization capabilities and these helped the user correctly differentiate 
between false and true alarms. 

2. Markovian Matching with Chi Square Testing 
We have modeled the detector after popular and successful spam detec­

tors [MW04, Yer04] since these have a number of desirable traits: 

• They are self learning and need only be presented examples of desirable and 
undesirable behavior. 

• They build a model of both desired and undesired behavior instead of build­
ing models of only one or the other and thus have a potential advantage 
when it comes to detection accuracy. 

• They can detect behavior in streams of data that may only exhibit some local 
structure, a very open ended detection situation. 

• Spam classification and intrusion detection share similarities and these de­
tectors have performed very well in the spam classification scenario. 

Training and classification begins as follows: first the sequence is divided 
into records and the records into tokens. Then a sliding window of length six is 
moved over the tokens, one token at a time. For each sliding window position, a 
set of features is formed. This feature set is the set of all subsequences obtainable 
by replacing some but not all tokens by the distinguished blank token ''(skip)". 

An example will make this clearer: Consider the record 'The quick brown 
fox jumps over the lazy dog" with the individual words as tokens. First the 
window is slid across the input, the first window being: "The quick brown 
fox jumps over." Then the feature set is formed: "(skip) (skip) (skip) (skip) 
(skip) over", "The (skip) brown (skip) (skip) over" etc. such that all possible 
combinations are covered. 

The feature set is isomorphic to the powerset of the six tokens (assuming that 
they are distinct), minus the empty set. Thus for a window of size six, there are 
2^ — 1 = 63 features per window. 

A weight {W) is then assigned to each feature according to the formula: 
W - 2(^-1) where n is the number of non-(skip)tokens in the feature. The 
weights are superincreasing, so that the weight assigned to a long feature (i.e. 
one that contain many tokens and less empty positions) outweighs all of its 
subfeatures combined. This way we approximate (piecewise) a Markov model 
instead of actually attempting to generate a proper unified Markov model. 

Training of the classifier consists of running examples of good and bad 
records through the above process and counting the number of times the re­
sulting features occur in a good and bad context respectively. 
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Classification i.e. assigning a score to each record is similar but here we begin 
by using the resulting frequencies from the previous step to calculate the local 
probability (Pi) of the feature being indicative of a bad context. The probability 
is calculated by the following formula: Pi — 0.5 -f- W{ni) — n^)/2(n5 + rig) 
where n^ is the number of times the feature occurs in a bad context, rig is the 
number of times the feature occurs in a good context and W is the weight as 
described above. The formula for P/ is purposely biased towards 0.5 for low 
frequency counts, such that features that do not occur often are not considered 
as indicative of context as features that have higher frequency counts. Thus, 
somewhat simplified. Pi indicates the badness of a feature on a sliding scale 
from 0.0-1.0. With 1 — Pi indicating the goodness of same feature. Of course, 
0.5 means that we either found equal evidence for the feature indicating a good 
or bad context, or no evidence at all. So far the detector is heavily influenced 
by Yerazunis's Markovian matching [Yer04]. 

Given the local probabilities of the features Pi they have to be combined into 
an overall score for the entire record {Ps)- We have chosen here to perform a chi 
square test as done in the SpamBayes project [MW04]. The local probabilities 
of all features are tested against the hypothesis that the message is good and bad 
respectively and these probabilities Pg and P5 are combined as: Pg = {Pg — 
P5 + l) /2. The detector proper returns Pg, Pg and P5 for later visualization. 

The choice of using a window length of six merits further discussion. Yer-
azunis original detector (CRM-114) has a window length of five, but no further 
insight into why that choice was made is provided [Yer04]. In a sense a longer 
window size would be better, as that enables the detector to detect order de­
pendent features further apart. However, with superincreasing weights, these 
longer features will also serve to make the relative weight of the shorter features 
lower, which means that the detector might make a misclassification having 
learned a long irrelevant sequence that drowns all shorter sequences. There is 
also the issue of the runtime of the detector. As we calculate the feature set 
of the window, the size of the set is exponential in the number of tokens, so a 
longer window means much more data to learn or classify. To keep the runtime 
reasonable a window length of six was chosen. Furthermore it has been demon­
strated that the data from Warrender et. al. [WFP99] require a window length of 
at least six to detect all intrusions in that dataset, and as we will later illustrate, 
the ability of the detector to classify based solely on the ordering of tokens with 
examples from that data, it seemed appropriate. It should be noted though that 
the particular window size of six seemed to be an artifact of one particular trace 
of the Warrender experiment, and not based on any deeper underlying feature 
of the nature of the intrusive or normal processes [TM02]. In any case this 
issue merits further attention, especially considering that the attacker ought to 
be considered to know the window length used. 
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3. Visualizing the Detector 
A problem with the detector described in Section 2 as it stands is that it is 

opaque to the user of the detector. When training the detector the user get little 
or no feedback on what exactly the detector is learning and how to improve 
on the situation. When using the detector for scoring unknown data the user 
does not get much insight into why the detector classified the way it did. This 
makes it difficult to discern when the detector is operating correctly and when 
it is not, i.e. identifying false alarms and missed detections. Our hypothesis 
is that visualization of the state of the detector with interactive feedback when 
training will lend the user insight into how the detector is operating and thus 
mitigate these problems. 

The straightforward approach we have described in the previous chapter, the 
bayesvis tool, is to display the token stream one record line, and color code the 
tokens in some way to signal their significance to the user. A problem here is 
that the detector proper divides the input stream up first into windows and then 
into features, and this is clearly too much data to display on one line. Applying 
the visualization idea of Overview and detail [CMS99, pp. 285-305]—where 
one part of the display gives an overview of the data and another part more detail 
about the region of interest—seems appropriate. The visualization problem is 
one of devising a workable overview display, i.e one that summarizes the detail 
data in a consistent manner such that the user can discern which records are 
worth a closer look and which are uninteresting. 

Figure 6.1 is a Screenshot^ ̂  of the prototype visualization tool Chilvis. The 
data displayed are HTTP access request strings that will be discussed in greater 
detail in Section 4. From a visualization standpoint it is divided into three 
panels showing progressively greater detail the further towards the bottom of 
the screen the user looks. The bottom most panel displays the scoring features 
of the currently selected window. The middle panel displays all windows of 
the currently selected record and the top panel displays the records. 

Starting at the bottom of Figure 6.1, we describe the components of the 
interface in turn: 

Feature Panel Tht feature panel displays the relevant features in two columns 
(made up of one score column and six token columns each) with the left 
column sorted on Pi in ascending order (the column marked score in the 

^ Where the lower part of the display does not contain any data the figures have been cropped. 
^Unfortunately the human eye is much better at discerning between different colors than levels of gray, 
so a gray scale mapping for the purpose of this presentation is less effective at conveying the na­
ture of our visualization. It is suggested that the reader consults the original figures, aviable from 
"www.cs.chalmers.se/~daveA/isBook", or the on-line, color version 

http://www.cs.chalmers.se/~daveA/isBook
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Figure 6.1. The Chi2vis tool after training one bad and one good (Cropped) 

panel) and the right column sorted in descending order.^ Thus the left 
column displays the feature most indicative of a good record at the top and 
the right column displays the feature most indicative of a bad record at the 
top. The features themselves are displayed one to a line on a heatmapped 
background [TufOl], i.e. the color is mapped on the color wheel from green 
for Pi = 0 via yellow for Pi :== 0.5 to red for Pi = 1.0. The color chosen is 
at the rim of the wheel, i.e. it is fully saturated and with a maximum value. 
This way the greener the feature the more indicative of a good context, 
and conversely the redder the more indicative of a bad context. The actual 
numeric score of the feature is also displayed to the left of the feature itself. 
It should be noted that these features are the only features displayed that are 
actually taken into account when the detector proper scores a record. 

Window Panel The middle panel, the window panel, displays the windows 
of the currently selected record in such a way as to give the user both the 

^Note that only the right column is fully visible in the figure i.e. it has all six token columns and the score 
column visible. Only the rightmost four token columns of the left column is visible. 
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opportunity to select a window"̂  for display in the feature panel and to give 
an overview of the feature values for other windows not currently selected. 
In order to do this we have chosen to use the chi square test as in the 
detector, but here on a token by token basis. For each token in the window 
each feature in the database is extracted and all features that have the same 
token in the same position are selected. The local probability values of 
these features are then put to the chi square test and the combined score of 
the test determines the hue (i.e. on the green-red scale) of the heatmapped 
background color. The hypothesis probabilities Pg and Pi^ are combined into 
a single value (summed) and that value determines the saturation (i.e. how 
close to the whitepoint; at greater saturation, further from the whitepoint, 
the colors appear less "washed out") of the heatmapped background. In this 
way the user can discern two parameters: how good/bad indicative the word 
is and how certain the detector is of that classification, with a high degree of 
certainty (i.e. P^ low and Pg high or vice versa) producing a saturated color 
and a lower degree of certainty producing a more washed out appearance.^ 
If the word never occurs in any feature then the background color is set to 
gray which serves as a marker that this token has not been seen before. 

Record Panel Lastly the record panel at the top is visualized much the same 
as the window panel, i.e. the relevant features are extracted and combined 
as for the window panel but now each word can of course be part of mul­
tiple windows as well. It should again be noted that it is only the feature 
probabilities that are actually part of the scoring proper. The chi square tests 
performed in the window and record display are designed to give the user a 
consistent summary of the actual scoring/learning process. 

The interaction with the training phase is via the three top most buttons 
(or their keyboard shortcuts) whereby the user can mark a record (or range of 
records) as being good or bad examples (or resetting them to neutral status in 
case of error). 

A few other fields in the record view deserve mention. The leftmost column is 
a marker that displays the training status of the record (0.0 on green background 
for good, 0.5 on yellow background for neutral or untrained and 1.0 on red 
background for bad). Next is the total score of the entire record on a heatmapped 
background (with certainty value taken into account) rounded to three decimal 
places, then Pg and P^ for the record mapped onto the range 1-9 (i.e. one 

"̂ In the window panel of the figure, detection window number three has been selected as is indicated by the 
blue outline of the first element ("doc") ofthat window. The whole record is not marked more clearly as that 
would obscure the heatmap. Unfortunately that is not the case for the record display as that is not possible 
with the graphical user interface toolkit used. 
^These parameters are not completely independent. A score of 0.5 could never occur with a really high 
degree of confidence for example. 
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character each) on a heatmapped background (from yellow to green and yellow 
to red respectively) and finally the record itself as previously mentioned. 

To aid in both training and using Chi2vis as a detector the user has several 
options regarding sorting the record view. The user can sort on good/neutral/bad 
i.e. the training status of the records, on the records alphabetically, and also the 
record according to the record score.Of course the user can also save/load etc 
the session or by removing all the currently loaded records but keeping the 
feature data, save the resulting detector and load new records to be scored 
without having the display cluttered with old training data. The user can also 
search in the data by was of tho find and skip buttons that find the search string 
indicated or skip ahead to the next record that does not match the search string 
(counting from the beginning) respectively. To facilitate search and skip the 
feature was added that when the user clicks on a record the record is copied 
from the beginning up to the character under the cursor to the search field. If the 
user wishes to see individual token scores (as abstracted above) she can select 
display scores which will included them in brackets after the tokens themselves. 
This also displays the total score (and confidence values) in the status bar with 
full precision in addition to the rounded values presented in the record display 
itself. 

It is of course difficult to do justice to the interactive qualities of a tool 
such as this in a static presentation, but to give a feel for it a small example 
is presented in the Screenshots in figures 6.1, 6.2 and 6.3. A few examples of 
malicious and benign web access requests have been loaded into Chi2vis. The 
issue of malicious and benign web access requests is discussed in more detail 
in section 4. In the first Screenshot (Figure 6.1) the user has marked one access 
request as bad and one access request as good. As we can see the training is 
actually adequate for the attacks, Chi2vis correctly marks all the other examples 
of attacks as malicious. (For added detection accuracy perhaps more examples 
should be trained on in an operational setting). This is seen not to be the case for 
the benign access requests though, the detector finds insufficient evidence to be 
sure of the status of most of them. As we can see in the figure, this is due to the 
detector inadvertently thinking that requests that end with the pattern "HTTP 
1.1" are malicious (In typical use the irrelevant tokens learned are not of this 
trivial nature, they have been chosen here for purpose of illustration). This is of 
course not likely to be true, indeed looking at the training data this seems indeed 
to be a fluke in that the one good example does not contain the "HTTP 1.1" 
pattern though the other misclassified benign access requests do. In Figure 6.2 
the user has thus selected and trained another benign access request and that has 
served to make the detector correctly classify the other visible benign access 
requests. However, in the same figure we spot the reverse situation where the 
"HTTP 1.0" pattern has likewise been found to be indicative of a good context, 
even though the overwhelming evidence of a bad context has sufficed to make 
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the correct classification in this instance. However, as the pattern in itself is 
known to not materially affect the outcome of any attack the user selects the 
offending access request to retrain the tool. Figure 6.3 displays the situation 
after the update. In this figure we can see that the "HTTP 1.0" pattern (and 
all permutations) in themselves have been reevaluated to have a 0.500 score, 
i.e. neutral. In conjunction with the attack access request though (as we can 
see in the lower right part of the figure) it is still indicative of a malicious 
request, which is as it should, as the classifier has learned the essence of the 
attack: the attempted invocation of a command interpreter and hopefully the 
many variations thereof. 
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Figure 6.2. The Chi2vis tool after training one bad and two good 

Note that the display of the summary data in the two topmost views (even 
though this data is not actually part of the scoring) seem to work well. From the 
bottom up they give a progressively less detailed picture of what the detector has 
learned, providing a useful overview of the detailed lower level data, without 
cluttering the display with irrelevant information. 
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4. The Experimental Datâ  
We have chosen to conduct two different experiments. The first more compre­

hensive experiment is on our own web server access log data, and the second on 
publicly available order dependent system call trace data described in [WFP99]. 

For the first experiment we used the same data as the preceding chapters 
(Chapter 4and Chapter 5), based on a webserver access log . 

Even though the choice was made to study webserver logs, the longer term 
aim is that the general approach developed here should generalize to other 
monitored systems. It should be noted that the tool is agnostic in this respect, 
placing few limitations on the form of the input data.^ 

The log consists of a text file with each line representing an single HTTP 
access request. The fields logged were originating system (or IP address if 
reverse resolution proves impossible), the user id of the person making the 
request as determined by HTTP authentication, the date and time the request 
was completed, the request as sent by the client, the status code (i.e. result of the 
request), and finally the number of bytes transmitted back to the client as a result 
of the request. The request field is central. It consists of the request method 
("GET", "HEAD", "CONNECT", etc), followed by ihtpath to the resource 
the client is requesting, and the method of access ("HTTP 1.0", or "HTTP 
1.1" typically). The path in turn can be divided into components separated by 
certain reserved characters [FGM+99]. 

The log for the month of November contained circa 1.2 million records. 
Cutting out the actual request fields and removing duplicates (i.e. identifying the 
unique requests that were made) circa 220000 unique requests were identified. 
It is these unique requests that will be studied. 

We had previously gone thorough the November 2002 access log by hand, 
classifying each of the 216292 unique access request for the purpose of intrusion 
detection research. 

The data that resulted was described in more detail in Chapter 4 and are only 
summarized briefly in Table 6.1. The table details the number of different types 
of access requests in the training data. 

^The description of the data here, save for the description of the Warrender system call data at the end of the 
section, is similar to the more detailed description in Chapter 4, beginning on page 49. They are summarized 
here for completeness. 
^That said, lower level, more machine oriented logs may not be the best application of this method. Even 
when converted to human readable form they require detailed knowledge of e.g. protocol transitions etc. Of 
course, fundamentally the logs have to make sense to someone somewhere, as any forensic work based on 
them would otherwise be in vain. Another problem is that of message sequences where the sequence itself 
is problematic, not one message in itself. 
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Access meta-type 
Formmail 
Unicode 
Proxy 
Pathaccess 
Cgi-bin 
Buffer overrun 
Miscellaneous 
Total attack requests 
Normal traffic 
Suspect 
Total requests 

Unique requests 
285 
79 

9 
71 

219 
3 
7 

673 
215504 

115 
216292 

Table 6.1. Summary of the types of accesses in the training data 

The system call data from Warrender et. al. [WFP99] consists of long runs of 
system call names (without arguments) E.g. mmap:mprotect:stat:open:mmap:-
close:open:read etc. Figure 6.6 illustrates this further. The interesting aspect 
of this data is that the number of tokens (different system calls) is quite small 
and that they all occur in all traces. Hence it is solely the order of the system 
calls that differentiate a good trace from a bad trace. Unfortunately this also 
makes them less suitable for this type of detector as there is less data available 
for the user to make sense of visually. Nevertheless we deemed it interesting to 
see how the detector proper performs when subjected to such data as it is order 
dependent only, and it was furthermore the only such data that was available. 
A problem here is the lack of intrusive data with which to train the detector. 
The original stide detector developed by Warrender et. al. [WFP99] used in the 
experiments was a pure anomaly detector in that it only learned benign patterns 
and flagged patterns sufficiently abnormal as an intrusion. 

5. Experimental Results 
We have conducted three experiments of the effectiveness of Chi2vis. The 

first two with the data described in section 4 and the last is a comparison with 
the Bayesvis detector described in Chapter 5applied to the same web access 
requests as Chi2vis is here. 

5.1 Web Access Requests 
For the first experiment we partitioned the web access request data described 

in section 4 into a set of training data and a set of test data. Ten percent of the 
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accesses (with a minimum of one access request) in all the classes of attacks 
and the normal data were selected at random. The suspect access requests were 
not included. The detector was then trained on all the resulting training attack 
access requests (i.e. they were all loaded into Chi2vis and marked as bad). The 
normal training data was added and enough of the normal data was marked as 
good until no false positives were left. This was accomplished by repeatedly 
re-sorting by score and mark the worst scoring requests as good. We call this 
strategy: Train until no false positives. A request was considered a false 
positive if it had a displayed score of 0.500 or higher. A total of 280 access 
requests had to be trained as good until all false positives were gone. 

It should be noted that for many of the attack types, one might suspect 
from the outset that too few training examples were provided (i.e. only one 
example), as we can see in Table 6.2.^ This is not as much of a draw back as 
expected though, as this experiment is mainly about illustrating the viability of 
visualization as a means of understanding what the detector is learning, and less 
about illustrating to what extent such a detector could be made to perform well. 
As we can see in table 6.2, the two classes where more than twenty examples 
were presented performed reasonably, with one of the classes that contain fewer 
examples (seven for the Unicode-class) does admirably. Viewing a sample of 
the access requests themselves in Figure 6.4 it becomes apparent that this is 
probably the class most suitable for intrusion detection training as it consists 
of a well defined type of attack that is easy to differentiate from benign access 
requests. Note that the system has correctly picked up on the "attack tail" 
of the requests, i.e. the system interpreter that the access request ultimately 
seeks to execute. While the command interpreter invocations in the data are 
not completely identical in all instances, the learning of the features with less 
tokens also serves to identify them. In Figure 6.4 we see the very head of the 
path {.vtiMn) also playing a role in the detection. 

As for the experiment described in Chapter 5, we conjecture that it would 
be difficult to avoid detection for this type of attack since certain significant 
tokens are inevitable. We also believe (as we argued previously) that it would 
be difficult to drown the operator with chaff. For example, as the detector 
was not trained on much benign traffic, trying to drown the malicious tokens 
by injecting (conjectured) benign tokens would not help much either, since it 
would be difficult for the attacker to guess exactly which of the possible tokens 
that signify a benign message. As this is a side effect of our training strategy, 
other strategies may display other characteristics. We concede though that this 
area merits further attention. 

^The various classes the attacks have been divided into are also probably more or less suitable as a classifi­
cation for detector training. 
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Access meta-type 
Formmail 
Unicode 
Proxy 
Pathaccess 
Cgi-bin 
Buffer ovenxin 
Miscellaneous 
Total 
Normal 

Training 
28 

7 
1 
7 

21 
1 
1 

66 
21550 

Testing 
257 
72 

8 
64 

198 
2 
6 

607 
193954 

False eg. 
0 
2 
2 

34 
15 
1 
3 

57 
-

False neg. (%) 
0 
3 

25 
53 

8 
50 
50 

9 
-

Table 6.2. False negatives (misses) in testing data 

The features detected in this data were all within the window length chosen. 
The attack tails for the Unicode attacks for example were all around length 
five. The detector would still have been able to detect the attacks with a shorter 
window as the tokens themselves do not occur in the normal data, but had they 
occurred the detector with the current window length would still have been able 
to detect them given the unique order of tokens in the execution of the command 
interpreter. 

The raison d'etre of Chi2vis though is in helping the operator identifying 
false alarms (false positives). Fortunately for us there were a few false alarms 
with which to demonstrate the capabilities of the visualization. Table 6.3 details 
the false alarms. Looking at Figure 6.5 we see that the five false alarms that 
begin with HEAD form a pattern. The detector has obviously seen evidence 
that the pattern "HEAD (skip) (skip) HTTP 1.1" is modestly indicative of an 
intrusion. And looking at the training data it is relatively simple to spot these 
attack patterns. However, in this case it is clear that the detector has been over 
trained on the attack pattern (or indeed under trained on the normal pattern) and 
marking only one or two of these patterns as good in this context serves to bring 
the pattern in question to a more normal score while still not compromising 
the detection capability of the detector as can be seen by looking at the already 
trained attacks Doing so reduces the number of false alarms from 30 to 4 in the 
test data. 

5.2 Warrender System Call Trace Data 
The second part of the experiment uses a subset of the available traces from 

Warrender et. al. mentioned earlier. The data chosen are the normal login traces 
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Type 
HEAD-pattem 
Others 
Total 

False alarms 
26 
4 

30 

F.a. (%) 
0.010 
0.002 
0.015 

Table 6.3. False positives (false alarms) in testing data 

and the "homegrown" attack traces from the UNM login andps data^^ with those 
traces that only contain one system call removed. More data sets are available 
but as the visualization part of Chi2vis is less useful on this data, and the time 

°Available at the time of writing at "http://www.cs.unm.edu/~immsec/data/login-ps.html". 

http://www.cs.unm.edu/~immsec/data/login-ps.html
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Good Neutral Bad • Display scores G/N/B Alpha 
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Figure 6.5. False alarms: Example of the //EAD-pattem 

taken to train and evaluate the detector on such long traces (several thousand 
tokens each) are substantial, only one data set was chosen for evaluation. 

The data was converted to horizontal form with one trace per line for inclusion 
into Chi2vis. There were, unfortunately, only a total of 12 traces of normal data, 
and 4 traces of intrusive data in the data set chosen. Access to more traces would 
have been preferable. A complication with this data is that the intrusive traces 
(naturally) contain long traces of benign system calls. As a consequence of 
how the detector in Chi2vis operates we cannot hope for the intrusive traces 
to be given a high score (close to 1.0) as there will be substantial evidence of 
normal behavior in them. Thus we will have to consider a low score (close to 

file:///users/cs/koen/N�u/start,hLwl
gopher://cs.chaimers,se:79/0/whallgren
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0.0) as benign and a higher score (0.5) meaning that there is evidence of both 
good and bad behavior, to signify an attack. 

Using interactive visual feedback as a guide, training the detector on 4 good 
traces and 2 bad traces (unfortunately a substantial part of the available intrusive 
traces) yields a detector where 10 of the good traces are correctly classified and 
2 of the good traces are not (i.e. false alarms). Likewise 3 of the bad traces 
are correctly classified but 1 of them is not (i.e. missed detections). Note that 
these figures include the training data. Thus while the detector does not operate 
splendidly, given the lack of training data, there is some evidence that it can 
differentiate between good and bad traces in the Warrender data. Figure 6.6 
is a visually rather boring illustration of this. It has been cropped to illustrate 
the relevant overall results. In the figure the good traces were prepended with 
the character "?" and the bad with "@" for illustration (they are not part of the 
training). 
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Figure 6.6. Results from training on syscall data (Cropped) 

It should be noted that we do not suggest that Chi2vis would make a good 
choice of detector for this type of data. As it has had the arguments to the 
system calls removed there is not enough context for the operator to be able to 
evaluate the classifier. Thus this kind of data is not a good match for a detector 
with a visualization component. We evaluate Chi2vis on this data set as it is the 
only data available to us where the difference between malicious and benign 
behavior is solely in the order of the tokens. 

5.3 Comparison with Bayesvis 
As it would be rather pointless to develop a visualization of the more com­

plex detector presented here if it faired worse on the same data set than our 
previous attempt described in Chapter 5, we present a comparison of Bayesvis 
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and Chi2vis in this section. The visualization portion of Bayesvis is based on 
the heat mapping principles presented here, but the detector proper is based 
on a naive Bayesian classifier, which is simpler than the detector applied here. 
Most notably naive Bayesian classification does not take the order of the tokens 
into account when classifying, instead treating every token in isolation. To 
investigate the differences between these two detection principles we present 
the results of subjecting Bayesvis to the data in section 5.1. As Bayesvis does 
not take the order of the tokens into account it would be pointless to compare 
its performance on the Warrender data in section 5.2. 

We trained Bayesvis on the same data according to the same principles. In 
doing so we had to mark 67 access requests as good in order to bring all the 
benign access requests in the training data below a total score of 0.500. This 
should be compared with the 280 access requests we had to mark benign until 
Chi2vis was sufficiently trained. We conjecture that this is because Bayesvis 
due to its less sophisticated detector is more eager to draw conclusions from 
what might be less than sufficient data. 

Table 6.4 details the false negatives (misses) of Bayesvis on the data in this 
paper. 

Access meta-
type 
Formmail 
Unicode 
Proxy 
Pathaccess 
Cgi-bin 
Buffer over­
run 
Miscellaneous 
Total 
Normal 

Training 

28 
7 
1 
7 

21 
1 

1 
66 

21550 

Testing 

257 
72 

8 
64 

198 
2 

6 
607 

193954 

Chi2vis 

0 
2 
2 

34 
15 
1 

3 
57 

-

False neg 

0 
0 
5 

51 
17 
2 

5 
80 

-

False neg (%) 

0 
0 

63 
80 

9 
100 

83 
13 

-

Table 6.4. False negatives (misses) in testing data for Bayesvis 

As we can see it performs substantially worse overall than Chi2vis. One 
data point deserves further mention though. The 51 misses in the pathaccess 
category can be divided into 9 + 42 misses of which 42 are of the same category, 
a short "HEAD" access request with the total score of the request being 0.490 
(i.e. barely benign) owing to the "HEAD" token having a score of 0.465. Just 
marking one of them as malicious marks all of the remaining 41 access requests 
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as bad (total score 0.587 with the "HEAD" token score of 0.563). However, as 
this goes against the train until no false positives strategy on the original benign 
data we have refrained from doing so. We would furthermore have to go back to 
the benign training and see that this update did not have a detrimental effect on 
the other categories (both in terms of false negatives and positives). Looking at 
the individual access types, Bayesvis does better in only the Unicode category. 
We hypothesize that it is because Bayesvis has an easier time generalizing 
from the example access requests in this rather straight forward category, as it 
interprets what evidence it has more liberally, while Chi2vis is hampered by not 
having seen sufficient evidence to be able to classify them as malicious. If this 
line of reasoning is correct, Bayesvis eagerness to classify requests as malicious 
on what might be less than solid evidence ought to show up in a higher false 
alarm rate for Bayesvis than for Chi2vis. 

Table 6.5 and Figure 6.7 details the false negatives (false alarms) in the benign 
testing data. 

Type 
"cgi-bin"~pattem 
Others 
Total 

Chi2vis F.a. 
" 

30 

Bayesvis F.a. 
20 
21 
41 

Bayesvis F.a. (%) 
0.010 
0.011 
0.020 

Table 6.5. False positives {false alarms) in testing data for Bayesvis 

As we can see our hypothesis of a higher false alarm rate was corroborated. 
Even if the false alarms were dominated by one pattern (the "cgi-bin" pattern 
detailed in Figure 6.8) as was the case for the Chi2vis experiment (though 
Chi2vis false alarms were dominated by a different pattern), the remaining false 
alarms still outnumber Chi2vis by a factor of two. Retraining could rectify the 
"cgi-bin" token problem but doing so is more problematic here than in the 
case of the Chi2vis "HEAD" pattern discussed earlier. In that case we were 
certain we were only affecting the short benign requests by retraining but here 
we would affect all requests that contains the "cgi-bin" token benign as well 
as malicious. 

In summary, Bayesvis does at least slightly worse in almost all respects 
compared to Chi2vis on the web access request data. One exception might 
be the benign training where Bayesvis required substantially less examples of 
benign behavior before a sufficient level of training was accomplished. We 
conjecture that this is a consequence of the simpler detector requiring less 
evidence before "jumping" to conclusions, as supported by the higher false 
alarm rate. 
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Figure 6.7. All the false alarms of Bay es vis 

We are not aware of any other attempts at visualizing the state of a Naive 
Bayesian (or similar) classifier than that of Becker et. al. [BKSOl] which de­
scribes a product in the SGI Mine Set data mining product by the name of Evi­
dence Visualizer. Becker proposes to visualize the state of the Naive Bayesian 
classifier in a two pane view where the prior probability of the classifier is vi­
sualized as a pie chart on the right, and the possible posterior probabilities for 
each attribute on the left as pie charts with heights, the height being proportional 
to the number of instances having that attribute value. The second display can 
also be in the form of a bar chart with similar (but not identical) information, 
where, to quote from the article: 

IThe] Naive Bayes algorithm may be visualized as a three-dimensional bar chart of 
log probabilities [... ] The height of each bar represents the evidence in favor of a class 
given that a single attribute is set to a specific value." (Kohavi et. al. [KSD96]). 

The display works well for models with a relatively modest number of attributes 
(which are probably continuous). A classical data set that is used in the paper 
to illustrate the concepts contains measurements of petal width and length, and 
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Figure 6.8. The "cgi-bin" pattern false alarms of Bayesvis 

sepal width and length for three labeled species of Iris. Thus in this data set there 
are only four different attributes. Other data sets in the paper have eight different 
attributes. The models we visualize, on the other hand, routinely have many 
more attributes (i.e. the number of all features seen in training). As such we only 
visualize the user selected attributes for which we have values and summarize 
the findings at a higher conglomerated level (i.e. we only visualize the selected 
features of the selected window that the record contains, visualizing the ones 
not present, possibly tens of thousands, would not make sense in our case). We 
also visualize the data directly (i.e. the text of the tokens). A similarity with 
the visualization presented in this chapter and the previous is that the user of 
Evidence Visualizer is provided with feedback on how many instances the model 
has been trained on, data that is available to the user with our visualization in the 
form of the whiteness of the individual attributes (and as heatmapped scores for 
the whole record). As the models the two approaches visualize are so different 
and the applicability of the Evidence Visualizer to the model presented here is 
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difficult to judge, it is difficult to compare the two (rather different) visualization 
approaches further. 

6. Conclusions 
We have developed a Markovian detector with chi square testing. A method 

for visualizing the learned features of the detector was devised. As this display 
was too detailed to be useful in and of itself, a method to visually abstract the 
features to give the user more overview (in two steps) of the data was developed. 

The resulting prototype Chilvis was put to the test on two data sets. A 
more extensive one comprising of one month worth of web server logs from 
a fairly large web server and a smaller one with publicly available system call 
trace data. The experiment demonstrated the ability of the detector to detect 
novel intrusions (i.e. variants of previously seen attempts) and the visualization 
proved helpful in letting the user differentiate between true and false alarms. 
The interactive feedback also made it possible for the user to retrain the detector 
until it performed as wanted. 

7. Future Work 
A first step is to develop or gain access to other corpora of log data that 

contains realistic and known intrusive and benign behavior, and to apply our 
tool to such data. An investigation of how visualization could be applied to 
other detection techniques is also planned. 

The question of attacks (evasion, injecting chaff etc.) against the approach 
taken here also needs further study as many of the attacks developed against 
spam classifiers cannot be directly translated to the scenario presented here. 

Any human computer interaction research is incomplete without user studies. 
These are easier said than done however. The process of classifying behavior 
into malicious and benign using a tool such as ours is a highly skilled task 
(where operator training would probably have a major influence on the results). 
It is also a highly cognitive task, and hence difficult to observe objectively. If 
such studies are to be of value they would almost certainly be costly, and the 
state of research into how to measure and interpret the results is perhaps not as 
developed as one might think. 



Chapter 7 

VISUALIZATION FOR INTRUSION 
DETECTION—HOOKING THE WORM 

1. Introduction 
This chapter^ explores the possibilities of employing a trellis plot of parallel 

coordinate visualizations to the log of a small personal web server. The intent 
was to find patterns of malicious activity from so called worms, and to be able the 
operator to distinguish between them and benign traffic. Several such patterns 
were found, including two that were not the result of worms and one of which 
was unknown at the time to the security community at large. 

1.1 Worms 
Worms (e.g. [Pfl97, pp. 179,192]) are self replicating programs that attack a 

remote computer system (often by exploiting some weakness) to gain access. 
They then transfer a copy of themselves to the subverted system and start running 
there. Once they are established in the subverted system the cycle begins anew, 
and the worm starts scanning for other systems to infect. 

Worms may or may not carry some sort of payload (logic bomb or otherwise) 
that perform an additional sinister task. The Code red worm [CEROla] for ex­
ample, launched a denial-of-service attack against a fixed IP address (belonging 
to the "whitehouse.gov" web site) on the 20-27 of each month. 

Worms have spread far and wide in the last few years, with far reaching 
consequences. Often they are combined with viruses i.e. the worm has viral 
properties also, but not always. The names of the most successful worms have 
percolated up to the common consciousness, with instances reported widely in 

^ An expanded and revised version of [Axe03]. 

http://whitehouse.gov
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the press and other news media e.g. the outage of The New York Times servers 
when they were attacked by the Nimda worm [USAOl]. 

Worms often exist in several variants, which are smaller or larger variations 
on the same basic theme. The Nimda worm is reported in five different variants 
in the wild [CEROlb]. Finding different variants of worms, if and when they 
occur, is therefore interesting from a security perspective, since they may exploit 
new vulnerabilities that may yet not have been addressed, and for research into 
the spread of worms. 

2. The Monitored System 
We have chosen to take the access log file of a small personal web server, 

that has been continuously available on the Internet for some months. This web 
server serves a small number of web pages from the home of the first author, to 
the circle of his immediate family and close friends. 

This web server is perhaps not representative of the majority of web servers 
on the Internet in that it requires authentication for all accesses. This would of 
course make it relatively simple in some sense to sort the illegitimate access 
attempts from the legitimate ones, but we have chosen not to take the result 
codes of the operation into account in our visualization, and therefore we claim 
that the study of such a system could be generalized to include systems which 
do not require authentication. 

A perhaps more significant problem is that the web server does not have much 
in the way of legitimate traffic. It is small and personal, and is only accessed 
by a dozen people or so. One could argue that this could make illegitimate 
accesses stand out more, not having much in the way of legitimate traffic in 
which to "hide". Even so, since we are looking for worms that often account 
for the majority of the traffic on much larger web sites, we still think the study 
of such a small system worth while, even though it remains to be seen if the 
results from this study can be generalized to larger systems. It is interesting 
to note in this context that the accesses patterns on this webserver is similar to 
what would be seen on a honey pot webserver, i.e. a server set up for the sole 
purpose of drawing attacks to it in order to study them further. 

Even if the method employed here does not scale to much larger web servers 
when employed directly, we believe it is feasible to combine it with other 
methods that first reduce the logfile to manageable proportions. Such reduction 
methods invariably suffer from the false alarm problems mentioned earlier, and 
hence it is not unreasonable to imagine a situation which is similar to the one 
here, i.e. that we have a relatively small dataset with a sizable proportion of 
intrusive activity, mixed with benign access. 

The web server runs thttpd, a small, secure and fast web server written and 
maintained by Jef Poskanzer, see "http://www.acme.com" for more informa­
tion. At the time of the experiment thttpd had an impressive security record 

http://www.acme.com
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with no published security vulnerabilities. The log records from the web server 
contain the following fields: 

IP address This is the IP-address of the system the request originated from. 
Thttpd does not have the ability of doing reverse DNS queries, and hence 
does not have the option of reporting the hostname of the remote system in 
the way that e.g. Apache can. 

Remote username This is ostensibly the username of the (remote) user that 
the request originated from. We know of no web browser (or other client) 
that divulges this information. 

Authenticated username The username the client provides authentication for. 
Thttpd (and other web servers) provide for authentication in the form of 
requesting a username-password pair from the originating web browser. If 
the authentication is successful the authenticated username (i.e. on the web 
server) is logged. If the authentication fails the attempted username is not 
logged, instead this field is left blank. 

Time The time and date the request was received. 

Http request The request string exactly as it was received the client. This is 
formed by the access method {GET, HEAD, etc), followed by the URL of 
the resource the client requested. 

Http status code The status code that was returned to the client. Unfortunately 
the full list of codes is too long to reproduce here. The interested reader is 
referred to the HTTP specification in RFC 2616. Noteworthy are the codes: 
200 which denotes the successful delivery of the requested page, and 404 
which signals the well known "page not found" error. 

Number of bytes This is the number of bytes that was sent in response to the 
request (if any). The HTTP response is not included in the count, only 
the actual page that was sent. Hence this value is blank for all erroneous 
requests. 

Referring URL If this request resulted from the user clicking a link on another 
web page, the client has the option of sending the URL of that web page 
(the "referring" page) as part of the request. Not all web browsers do this 
(at least not for all requests) so this information is not always available. 

User agent The name of the client software, if divulged by same. Note that for 
compatibility reasons many browsers let the user modify the value sent, to 
be able to masquerade as using another browser than they actually do. This 
is to thwart overzealous web designers who for misguided concerns about 
compatibility only allow certain browsers to access their web site. 
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An example of a few log entries can be found in Figure 7.1. 

213.37.31.61 - - [25/Sep/2002.-17:01:56 +0200] "GET /scripts/. .7.7,350. ./ 

winnt/system32/cmd.exe?/c+dir HTTP/1.0" 404 - "" "" 

172.16.0.3 - Stefan [25/Sep/2002:19:28:28 +0200] "HEAD /sit3-shine.7.gif 

HTTP/1.1" 304 2936 "http://server/" "Mozilla/5.0 (Xll; U; 

Linux 1686; en-US; rv:l.l) Gecko/20020827" 

172.16.0.3 - - [25/Sep/2002:19:28:46 +0200] "GET /pub/ids-lie.pdf HTTP/1.1" 

200 615566 "http://server/pub/index.html" "Mozilla/5.0 (Xll; U; 

Linux 1686; en-US; rv:l.l) Gecko/20020827" 

213.64.153.92 - - [25/Sep/2002:22:57:51 +0200] "GET /scripts/root.exe?/c+dir 

HTTP/1.0" 404 - "" "" 

Figure 7.7. Sample records from the webserver log file 

Thus the log contains a maximum of nine degrees of freedom. In our data 
set this is reduced to eight, since no web client divulged the remote login name 
of the user, and hence this field is always empty. All the other fields have values 
for at least a subset of the records. 

The log contains some 15000 records, and begins in earnest on 25 Sept 
2002. It ends on 1 Jan 2003, and thus covers some three months of activity. 
As a comparison, the web server log for the computer science department at 
Chalmers for the month of November 2002 contains on the order of 1.2 million 
accesses, comprised of circa 200 000 unique requests. 

3. Scientific VisuaUzation 
The security log data has multiple dimensions with no a priori dependent 

variables and is therefore multivariate in nature. Spence [SpeOl, pp. 45] lists 
only a handful of methods for the visualization of multivariate data. Of these we 
have chosen the tried and tested techniques of the parallel coordinate plot [Ins97] 
combined with a trellis plot in one variable [SpeOl, pp. 168]. 

The main reasons for choosing parallel coordinate plots over the other meth­
ods were: 

• The visualization does not give preference to any dimension at the cost of 
other dimensions. This is important if we don't have any indication about 
which data may be more important from the point of view of making a 
successful visualization of the data set. Other visualization methods give 
some dimensions of the data a more prominent (visually striking) position 
at the cost of others. 

• Parallel coordinate plots can visualize data with more dimensions than the 
other methods. It is not unreasonable to visualize data with ten or even 
twenty dimensions. Most of the other available methods strain when faced 
with four. As we shall see this turns out to be less important to us as we will 

http://server/
http://server/pub/index.html
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reduce the data set to five dimensions. Since our original data set contains 
eight degrees of freedom, and it would not be unreasonable to visualize them 
all in an operational setting, the ability to visualize many dimensions is still 
an important consideration in choosing the visualization method. 

• The visualization methods lends itself to trellis plots, i.e. where we make a 
plot of plots (see below), in one of the variables. This is an effective method 
in seeing trends in higher dimensional data, when one variable has been 
singled out, in our case to group the requests. Not all the other methods 
lend themselves to trellis plots as well as the parallel coordinate plot, if at 
all. 

• The parallel coordinate plot is very generally applicable; it can handle both 
continuous and categorical data (though admittedly some of the key benefits 
are lost then) and it can be used to both see statistical correlations between 
data points, and as a more general profile plot, where the appearance of the 
graph itself (rather than the curve forms as in an ordinary x-y scatter plot) 
can be used to identify features. We will use the parallel coordinate plot in 
the latter capacity. 

• The last, but by no means the least, of our considerations is that the parallel 
coordinate plot is well researched and the theory around it somewhat more 
mature than is true of many of the alternatives. 

3.1 The Parallel Coordinate Plot 
We have used the tool Spotfire to make the parallel coordinate plot .̂ A 

parallel coordinate plot is prepared by taking each data point and projecting it 
as a line joining the components of the vector onto a set of parallel coordinate 
axes. This form of visualization does not only let the viewer learn about the de­
pendencies between the variables, but also lets the viewer quickly see emerging 
patterns, and compare different datasets for similarities and differences [Ins97]. 

Figure 7.2 illustrates the case where 68 different points in eight dimensional 
space have been mapped onto (eight) parallel coordinate axes. In this case the 
dataset was chosen by limiting the log file from our webserver to the first 68 
data points. We choose the eight dimensions that had data. They are in order 
in the figure: 

Date The date and time the request was made. In this case the data has been 
limited by selection, and hence the available dates only cover a small per­
centage of the axis. Spotfire does not rescale the axis when the visible data is 
limited in this way, to preclude the effect where abrupt scale changes makes 

^"http://www.spotfire.com" 

http://www.spotfire.com
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Figure 7.2. A simple parallel coordinate plot 
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the user lose his orientation as different ranges of data are selected. If we 
had rescaled manually, or made smaller datafile, then the available dates 
would have covered the entire axis from 0% to 100%. This is of course true 
for all the subsequent data as well. 

Note the date slider, in the query devices sidebar, that has been manipulated 
to select the narrow range of records that are displayed. 

Remsys/Request/Url This variables are imported as strings, lexicographically 
sorted, and plotted as categorical data. 

Authuser The usemame of an authenticated user, or the minus sign if no au­
thentication has been performed. Note the check boxes corresponding to 
the two possible values in this dataset at the very top of the query devices 
side bar. 

Binned status The status (e.g. 404-notfound) that the request resulted in. This 
data was imported as integers. However the result codes are not integral 
per se—i.e. magnitude comparisons between the result codes 200 and 404 
interpreted as the integers 200 and 404 respectively, makes little sense. 
Instead the result codes have been rescaled by being sorted into bins chosen 
so that each result code ended up in a bin of its own. This has transformed the 
integral data into categorical data which is plotted with each bin equidistant 
on the vertical axis. The order of the bins is also user selectable. 

Bytes The number of bytes that were sent in response to the request. Imported 
as integers, and in this case the data has a magnitude as opposed to the status 
data. Spotfire has the ability to logscale such data (and many other possible 
scalings can be applied as well) should the user so chose though we have 
opted not to. 

Useragent Typically the browser that made the request, if that information has 
been divulged. Imported as a string and hence treated as lexicographically 
sorted categorical data. 

For the purpose of this paper we will not use the possibility of finding corre­
lations between data points using the parallel coordinate plot directly. However, 
just to hint at the possibilities; in Figure 7.2 we see a strong inverse correlation 
between the result code {binned status) and the auth user field, indicating that 
the lack of authentication leads to "access denied" types of error codes, and 
vice versa. This is not surprising given that we have already stated that the 
webserver was configured to use authentication for all accesses. However, we 
used a similar plot to discover that the access controls had been misconfigured 
at one point (after having upgraded the webserver) giving access to the world. 

It should be noted that while Spotfire does not mark the axes with any label 
indicating the range in absolute terms, hovering the mouse over any specific 
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value displays the coordinate of the axis, as well as all coordinates for the closest 
record. Data points can also be marked and the data for the corresponding 
records displayed in the sidebar details-on-demand. Here we have marked one 
record (indicated by the thicker lines surrounding it) and the corresponding 
record is visible in the lower right comer of Figure 7.2. 

Another sidebar (query devices) allows the user to dynamically adjust the 
data that is displayed, e.g. a continuous variable can have a slider (or other user 
selectable input element) that lets the user select the relevant parts of the data 
set for display. This sidebar is in the upper right comer in the figure. In this 
case it displays three examples of query devices: check boxes, a range slider 
and an item slider. 

As these are dynamic user interface properties, it is of course difficult to do 
justice to their user benefits in a paper presentation. 

3.2 The Trellis Plot 

The trellis plot (or prosection matrix in the case of continuous data) is de­
scribed in [SpeOl, pp. 168]. It was originally used as a way of extending two 
dimensional scatter plots into three dimensions, without introducing a 3D view 
and all the complications that follow. Instead a pair of the variables is singled 
out and a plot of subplots is made, typically arranged in a triangular matrix, 
where the axes represent the different possible choices for the pair of parame­
ters, and the x-y position in the matrix contains a plot of the other parameters 
for the x-y value of the singled out parameters. In the case of continuous data, 
it is of course not possible to make a continuum of of subplots. Instead a dis­
crete number of ranges of values of the pair of parameters is chosen and the 
corresponding subplots made. 

In our case, we will chose only one variable, not a pair. We will single out 
the request string, which is already a categorical entity. Since we only make 
one parameter choice, the x-y position of the subplot within the trellis plot will 
not carry any further information—conceptually the subplots would be laid out 
in a linear fashion one after another—but are laid out on the plane so as to 
use screen real estate effectively. By doing the trellis plot this way we hope 
to find similarities in access patterns corresponding to different requests, and 
hence being able to visually cluster them corresponding to the entities (human 
or worm) that lie behind the particular requests in that cluster. This is also how 
we use the parallel coordinate plot as a profile plot. It is the profiles ("blobs" 
if you will) that exhibit similarities between the different subplots and we will 
use these similarities to group the requests into clusters. 
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4. Visual Analysis of the Log File 
The aim of this investigation is to find support for the hypotheses that the 

web server was targeted by some of the more popular worms (that attacked web 
servers) during the period in question. We would also like to be able to tell apart 
the different types of worms, if any, and also to differentiate between the access 
patterns made by worms, and those made by others, i.e. more or less ordinary 
users. We will perform this by correlating different requests with each other 
to see if they cluster into patterns of activity that can be distinguished from 
one another. We wish to make distinctions both between benign and malicious 
accesses, and also between the various malicious accesses themselves. 

There is some justification for the belief that such differences will be present. 
For example Feinstein et. al. [FSBK03] report differences in the distributions 
of source IP addresses between automated denial-of-service type attacks and 
benign traffic. These differences are significant and enables the attacked site 
(or intervening router) to differentiate between these types of traffic based on 
source IP address alone. 

Since our web server requires authentication it would be natural to divide 
access into allowed and denied as a first step, but as we we have mentioned 
earlier; since most web servers are not configured this way, we will refrain from 
using this data. Furthermore, since we do not see how this would allow us to 
tell different kinds of worms apart, another approach is necessary. 

Attack of web servers typically have to do with exploiting weaknesses in the 
web server's handling of input data, either by having the server misinterpret it, 
doing something the designers never intended, or by triggering a buffer overrun, 
thereby allowing the attacker to take control at a lower level. Since the only real 
source of input data is the request the web client (browser/worm) makes, it is 
(as we mentioned earlier) natural to make the visualization pivot on the request. 
We have already mentioned that one way of accomplishing this is to make a 
trellis plot of the log data, with the request being the controlling variable. 

In Figure 7.3^, a specific parallel coordinate plot has been made for each 
of the unique request strings (59 in total), i.e. the request string has been held 
constant, and all data pertaining to other requests have been filtered out in 
each of the 59 plots. As a consequence the request string was removed from 
the subplots themselves as it would not add any useful information. In fact it 
would have detracted from the similarities of the plots since it would have been 
different for each of the subplots. 

^Here, as for other detailed figures, we refer the reader to the book's web page where full color figures are 
available: "www.cs.chalmers.se/~daveA/isBook". 

http://www.cs.chalmers.se/~daveA/isBook
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Figure 7.3. A trellis of parallel coordinate plots 
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In order not to taint the results of the investigation with data that pertains 
to the success or failure of authentication, we have reduced the dataset to the 
following four variables: 

Date The date the request was made. 

Remsys The IP-address of the system that made the request. 

Url The referring URL if any. 

Useragent The user agent (browser) that made the request, if provided. 

The variables Authuser, Status and Bytes had to be removed since they tainted 
the experiment by leaking information (directly or indirectly) about the success 
or failure of the authentication: 

Authuser The usemame of the authenticated user, since this would immedi­
ately leak information about the success or failure of authentication. 

Status The result code that the request resulted in. There is a result code that 
communicates "authentication failure" and hence that would also directly 
leak information. 

Bytes The number of bytes that was sent. In the case of authentication failure, 
the webserver would not respond (in the same way as if the authentication 
would have succeeded), and hence not send any reply as a result of the 
request. This would set bytes sent to zero, and hence correlate rather strongly 
with authentication failure (though not perfectly). 

Removing data from the visualization actually strengthens the results of the 
experiment in that we remove security relevant information, making the task 
more difficult. In an operational setting we most likely would not perform this 
reduction. 

To illustrate the concept in greater detail; Figure 7.4 is an enlargement of the 
plot marked "3" in Figure 7.3. The axes are labeled with the respective variable. 

5. Results of the Investigation 
Even a quick glance at Figure 7.3"̂  reveals four interesting patterns (marked 

1-4 in the figure). Looking closer at the individual plots we can see that they 
originate from a large number of systems, and dates. They are also comprised 
of a lot of repetitive accesses (i.e. a large number of records). Other patterns 
can also be identified, more about them will be said later. They look markedly 
different even ignoring the fact that they are comprised of much fewer accesses. 

"̂ Or at least at the full resolution color version ("www.cs.chalmers.se/~daveA/isBook") 

http://www.cs.chalmers.se/~daveA/isBook
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Figure 7.4. A plot of the "Code-red" worm access pattern 

Even without knowing the contents of the web site, it is difficult to believe that 
there would be four sets of pages that would give rise to such access patterns. 
Indeed, the four patterns are quite distinct when compared to the rest of the 
subplots of the trellis plot. If we draw on knowledge about the contents of the 
website the game is immediately up. 

There are one or two additional suspicious looking candidates, but viewing 
the request themselves gives that game away. It is not unreasonable to view the 
requests to eliminate suspects; we envision this method as mainly useful for 
the system administrator of the site, i.e. someone that is familiar with the site 
and and manner in which it is used. Indeed someone who was not familiar with 
the site could not make the sort of security policy decision on the spot that we 
alluded to in the introduction to the paper. 

The four suspicious request patterns may be indicative of worm activity and 
merit further investigation. Dissecting the clusters with regards to the number 
of different requests results in: 

Pattern 1 Six different requests. 

Pattern 2 Ten different requests. 
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Pattern 3 One request. 

Pattern 4 One request. 

"GET /MSADC/root.exe?/c+dir HTTP/1.0" 

"GET /_vti_bin/. .y.255c. ./. .7.255c. ./. .y,255c. ./winnt/system32/cmd.exe?/ 

c+dir HTTP/1.0" 

"GET /c/winnt/system32/cmd.exe?/c+dir HTTP/1.0" 

"GET /d/winnt/system32/cmd.exe?/c+dir HTTP/1.0" 

"GET /scripts/root.exe?/c+dir HTTP/1.0" 

"GET /scripts/. .y,255c. ./winnt/system32/cmd.exe?/c+dir HTTP/1.0" 

Figure 7.5. The six different requests made by pattern 1 from Figure 7.3 

Viewing the access requests themselves (we have refrained from a detailed 
listing of all of them here to save space, but Figure 7.5 lists the six requests of 
the first pattern) and searching computer security sources we find evidence of 
two different instances of Nimda [CEROlb] in patterns one and two. These two 
worms seems to have invaded the same types of systems, given the similarities 
in the IP-address ranges they originate from. Nimda is interesting in that it 
attacks web servers (Microsoft IIS) by either scanning for back doors left by 
other successful worms (Code red), or by so called Unicode attacks, where the 
URL is modified (certain characters escaped) to avoid subroutines in the web 
server that clean the request of certain "dangerous" characters e.g. characters 
that modify the search path to requested resource. 

The third pattern consists of only one type of access. It was found equally 
quickly in the literature, since it consists of one very long access request, de­
signed to overflow a buffer in IIS [CEROla]. The Code red worm does not 
probe for a wide variety of weaknesses in IIS, as Nimda does, relying solely on 
the one buffer overflow to gain entrance. 

Comparing these two worms is illustrative in that we see a marked difference 
in the range of IP-addresses of infected systems. We presume that this is because 
Nimda can infect not only web servers, but also web clients (Microsoft Internet 
Explorer 5.0)—when the user visits a subverted web page, or be attached as an 
email virus. Thus home users, who presumably does not run web servers on 
their home computers frequently, are susceptible to infection by Nimda. Nimda 
then goes on to spread through all available means, including scanning nearby 
IP segments for vulnerable web servers and hence end up in our logs. 

Code red, on the other hand, relies solely on web server infection, and hence 
will infect other IP address ranges that have not been reserved by Internet service 
providers who cater predominantly to the home users. Therefore we see such 
a marked difference in the access pattern. 

Pattern four is the piece de resistance of the investigation. At the time of 
investigation, neither the literature nor any of the major security information 
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sources on the Internet listed this particular access request in conjunction with 
any known worm. They did list several similar access requests (as they are 
part of larger class of IIS vulnerabilities), and indeed had we only looked at the 
access requests themselves we might have missed that pattern four is different 
from the Nimda patterns since the request strings themselves look strikingly 
similar. The request in question is 

"GET /scripts/. .yo255c7,255c. ./winnt/system32/cmd.exe?/c+dir HTTP/0.9" 

Compare the similarity with the last request made in Figure 7.5. The total 
number of accesses was small; only 71 access requests (about on the same 
order as for Code red, and an order of magnitude less than Nimda). Another 
odd characteristic was that they were not repeated from the same system twice 
(with one or two exceptions). We concluded that we were either dealing with a 
careful worm writer, or perhaps not even a worm at all, but rather the activities 
of so called script kiddies, who follow a pre-made recipe found somewhere 
on the Internet "underground". As far as we could tell this was a new type 
of worm, or a new type of intrusive activity. In preparing the earlier version 
of this Chapter, published as [Axe03], a very detailed search of the available 
information sources revealed that these access requests had in fact been spotted 
earlier and identified as being the product of the manual application of the 
"cracking tool" sf ind.exe [Jel02]. This tool is employed by the pubstro 
movement [Bra], that break into web and file servers in order to build a network 
of computers with which to distribute "warez" (software distributed in violation 
of copyright). We were justified in our observation that the access requests were 
very similar to Nimda and may have been mistaken as such had we only looked 
at the access requests in isolation. Indeed many system administrators let this 
particular activity go unnoticed, mistaking it for an instance of Nimda [Jel02]. 

We subsequently realized that not all malicious activity present in Figure 7.3 
had been reported. There exists a final pattern of malicious activity, pattern 
five in the figure, consisting of two access requests, which are: 

"GET /scripts/. .y,cOy,af. ./winnt/system32/cmd.exe?/c+dir+c:\ HTTP/1.1" 

"GET /scripts/. 7,252e/. y,252e/winnt/system32/cmd. exe?/c+dir+c: \ HTTP/1.1" 

It is interesting in that it consists of a very small number of actual accesses— 
much smaller than for the other patterns. The first of these requests is interesting 
in that it is very similar to one of the worm requests, namely: 

"GET /scripts/. .y.cOy.af . ./winnt/system32/cmd.exe?/c+dir HTTP/1.0" 

Looking closer at the pattern, we see that the two parallel coordinate plots 
are similar but not exactly identical, one line differs. Studying the log records 
associated with these requests we find that they originate from six different IP 
addresses and that five of them match perfectly, while in one instance only one 
of the requests is made. In all cases this is the only traffic we see from these 
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hosts. Studying the available sources we learn that this pattern is also indicative 
of the sf ind. exe tool mentioned in the previous paragraph, though run with 
another set of options than in the previous instance. It is interesting to note 
that an order of magnitude less accesses is made using these options than the 
(presumably) more straightforward options that result in pattern number four. 

Even though there are a few more patterns in the rest of the data similar to 
pattern five, on closer inspection of the actual access requests they turn out to 
be benign. We are confident that we have (finally) found all the troublesome 
access requests. 

6. Discussion 
It is interesting to discuss the limitations of this method especially in light 

of the fact that the first report on this experiment went to print without the fifth 
pattern having been detected. A sticking point when doing visualization is that 
we can only aid the human operator in doing the detection. No matter how 
perfect this visual aid, the operator can still make mistakes. In the trellis plot 
in this case there is a visually distinct difference between patterns one through 
four and the benign patterns in that the benign patterns have a lot less traffic, 
and hence stand out much less than the malicious traffic. From this perspective 
it becomes possible to explain why the operator would mistake pattern five for 
a benign pattern as the operator subconsciously makes the distinction between 
the visually heavier intrusive patterns and the visually lighter benign patterns. 
As we have seen this conclusion breaks down in the face of pattern five, as 
even though it is visually similar to the benign patterns, it is still indicative of 
an attempted intrusion. So as a pure detection tool, i.e. as a visual tool that 
could help the operator differentiate between malicious and benign accesses, 
this approach may leave something to be desired in the case where we have 
much in the way of benign traffic. As a result, we are now less convinced that 
this method is suitable in that respect than when the work was first published. 
However, as a method to correlate access requests already found suspicious, 
e.g. by running a honey pot or applying any of the other approaches that have 
been presented in this book, the method presented here should still be effective 
in the manner demonstrated by our experiment. 

Another question mark regarding the applicability of these results is the issue 
of scalability. The log file we investigated has only 59 unique requests, and as 
earlier pointed out; more realistic log files from larger installations can contain 
as much as 200 000 unique requests. The method of inspecting the requests 
directly, using a trellis plot, as we have done here is unfeasible when the number 
of unique requests is as large as 200 000. We conjecture that a data set of not 
much more than on the order of 100 unique requests could be investigated using 
the method developed here. 



126 Visualization for Intrusion Detection—Hooking the Worm 

We see two ways of addressing this problem to enable this method to scale 
to larger data sets. 

The first is to reduce the number of requests before applying the visualization. 
One method of doing so could be to apply some form of anomaly detection to the 
requests, sorting out unusual requests, and then visualizing the output from the 
anomaly detection system to.^ This would allow us to tell apart the malicious 
accesses from the inevitable false alarms that would creep into the output from 
the anomaly detection system. An advantage of such an approach is that it 
would allow the anomaly detection system to be tuned so that the number of 
false alarms were relatively high—and hence the likelihood of detection would 
be correspondingly higher—since we would not observe the output directly, but 
use it as input for our visualization method. 

The other approach (perhaps most realistically used in conjunction with the 
first) is to reduce the number of unique requests by doing stepwise elimination, 
by first identifying two or more similar patterns and then combining them into 
one pattern (sub plot). Hereby iteratively reducing the number of subplots until 
it is small enough that an overview of all of them can be made, analogous with 
what we have performed in this experiment. 

7. Conclusion 
We have demonstrated that worm activity can be detected and analyzed by 

applying a trellis plot of parallel coordinate visualizations on the log of a small 
web server. The different requests made by worms can be correlated to the 
particular type of worm making the requests. Furthermore, the clusters formed 
by worm requests are markedly different from the clusters formed by benign 
requests/or the data set in this paper. Other patterns of malicious requests were 
also found, one which was worm like and distinct from benign access requests 
and one that was not, and as a result was overlooked when the first version of 
this paper was published. The visualization was successful even though the 
number of data points visualized was larger than what is generally considered 
the limit for such methods. 

Four different worm (or worm like) activities were found. Two of these were 
found to be indicative of the Nimda worm, one of the Code red worm, and 
the last two of a then largely unknown malicious activity, later identified as 
emanating from the manual application of the tool sf ind. exe. 

8. Future Work 
This investigation has really only scratched the surface of both what security 

relevant information is hiding in data sets such as this and of what visualization 

^i.e. the approach taken in Chapter 4. 
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in general, and how parallel coordinate plots in particular can be brought to 
bear to extract it. Also, the data set itself could be expanded with more realistic 
traffic, and more advanced simulated attacks. 



Chapter 8 

EPILOGUE 

1. Results in Perspective 
Computer security must rely - in a broad sense - on perimeter defenses. 

The term perimeter should not be interpreted too literally here; it need not 
have a literal interpretation as in case of firewalls etc. To our mind, other 
approaches that serve to separate the protected entity from the attacker's sphere 
of observation and influence also falls under this heading, such as the approach 
of statically (or dynamically) verify that source code is free of security defects 
etc. cf. the concept of prevention in Halme et. al. [HB95], described in Chapter 2. 

Perimeter defenses should be employed in depth. That is, just because one 
has been granted—or otherwise gained—access through the outer perimeter, 
one should not have free reign of the system. 

However, no matter how well protected a system is, there will always be 
chinks in its armor, and thus some sort of surveillance and response system 
must be in place to detect and deal with intruders as and when they appear. 
This system can sometimes possess a high degree of autonomy as is the case 
with virus scanners, spam filters (using signatures of known spam) and sig­
nature based intrusion detection systems. We would argue that in the general 
case, dealing with the more imaginative threats, a human operator needs to be 
in the loop and in order to be effective there should be tool support that enables 
her to quickly gain an understanding of the situation. We call this the principle 
of surveillance to set it apart from more traditional intrusion detection system 
principles. To believe that automated systems could deal with other than the 
most routine threats is overly optimistic, as the attacker in many cases could 
analyze the defenses for weaknesses and attack us there, to wit: "there's no 
equipment that man's ingenuity can devise that man's ingenuity can't also de­
feat" [KCBH96, p. 51]. No perimeter defense, however strong, will not last 
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if it is left unguarded, providing the attacker with ample time to analyze and 
ultimately defeat it. 

2. Further Reading 
The first mention in the literature of the idea to apply visualization to the 

field of computer security (specifically, intrusion detection) of which we are 
aware of is by Vert et al. in [VFM98].^ At the time of writing the area has 
seen more investigation, and as such we will limit the treatment here to selected 
applications of visualization in an intrusion detection setting much as ours, 
where the intent has been to apply scientific visualization to help the operator 
gain insight into the security state of the monitored systems. 

The work of Vert, et al presents a preliminary visualization of the security 
state of a computer system, by way of a spherical geometric primitive called a 
Spicule—the characteristics of which are investigated—^but provides no opin­
ion on how that security state should be calculated. More recently Erbacher 
et. al. [EWF02] has presented work building on the previous work by Frincke 
et. al. [FTM98]. This work is based on encoding information about network 
traffic and alarms from a network of intrusion detection sensors, as glyphs onto 
a stylized map of the network. 

A small subfield (e.g. [ROT03, JWK02, LZHM02]) of anomaly detection 
and visualization has arisen through the application of self-organizing maps 
(also called Kohonen maps) [KohOl] to intrusion detection. The question of 
visualization arises because the Kohonen map itself is a visual representation 
of an underlying neural network model. The work cited above shares the char­
acteristic that they all build some neural network model of network traffic or 
host data and then present the resulting two dimensional scatter plot to the user. 
The scatter plot typically illustrates various clusters within the data. A problem 
here is that the interpretation of the plot is known to be quite tricky [KohOl]. 

Girardin et al. [GB98, Gir99] also uses self-organizing maps, but stresses 
the link to the human operator. They also utilize other visualization methods 
in addition to the self-organizing map itself, using the self-organizing map as 
an automatic clustering mechanism. They report on successful experiments on 
data with known intrusions. For input data they use connection statistics etc. 
from TCP/IP traffic as their input data. While they study parameters of TCP/IP 
connections, they do not study the data transferred. 

Theo et al. [TMWZ02] visualize communication between pairs of routers 
on the Internet using the BGP (Border Gateway Protocol) routing protocol. 
Their choice of problem and visualization techniques are different from the 
one presented here, and they do not delve as deeply into the analysis of the 

^Predating this, the idea of applying visualization to intrusion detection was suggested to us by Professor 
Erland Jonsson at a meeting in the autumn of 1996. 
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security problems they detect (they are not as clearly security problems), but 
they do visualize a greater amount of data more compactly than done in this 
book and still manage to detect anomalies in the BGP traffic. This work has later 
been continued by adding a NIDES [AFV95] based anomaly based intrusion 
detection component and visualizing the output of the classifier together with the 
BGP update messages. Another view then lets the user do what if calculations 
setting different classifier parameters with visual feedback [TZT"^04]. 

In a similar vein, visualizing network flows (i.e. records that contain abstract 
information about communication sessions between computers such as source 
and destination IP addresses, how many bytes were transferred etc.) has been 
studied recently by Yin et al. [YYT+04]. Here parallel coordinate visualization 
is used (as we do) to selected parameters of these netflow records to detect 
anomalies in network traffic. 

A quick survey of the available commercial intrusion detection systems was 
also made. Only two systems uses any degree of visualization in our sense of 
the word. The first is CA Network Forensics^ which uses N-gram clustering 
followed by a three dimensional visual display of the clusters. On the surface the 
visual representation of the data in the clusters is similar to the one presented in 
Chapter 4 (i.e. a general 3D network) but while the graphs may look similar they 
express very different relations. There is no discussion as to the interpretation of 
these graphs and the underlying structure of the data is not allowed to influence 
the visualization. 

The second is Lancope Therminator^ which is based on the Therminator 
project described in [ZME04]. Therminator is a network level anomaly detec­
tion tool inspired by methods from the field of statistical physics. The anomaly 
detector works by building a model of network traffic as a modified Ehrenfest 
urn model, the parameters of which are (in addition to other processing) vi­
sualized as three dimensional bar charts, to give the user an overview of the 
state space of the model. The authors report on experiments where anoma­
lies have been injected into the traffic with the corresponding diagrams clearly 
showing a marked difference between the anomalous event and the steady state. 
The authors do not emphasize the visualization portion of the work presented 
in [ZME04] and it is difficult to ascertain the degree to which the visualization 
helps the operator gain insight into exactly what caused the deviation from the 
normal graph, even though it seems promising. 

The literature in the area has recently grown to become quite extensive, and 
we cannot do it justice here. The interested reader is referred to [BCLY04] as 
a starting point. 

2"http://www3.ca.com/Solutions/Product.asp?ID=4856". Verified 2004-12-20. 
^"http://www.lancope.com". Verified 2004-12-20. 

http://www3.ca.com/Solutions/Product.asp?ID=4856
http://www.lancope.com
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3. Conclusions and Future Work 
The marriage between visualization and intrusion detection seems at the 

outset a happy one. The application of visualization seems to bring benefits 
in the form of increased understanding of the security state of the monitored 
systems. 

Even though the usability of intrusion detection systems and the application 
of the principle of surveillance to the problem has seen some interest in recent 
years, much work remains to be done. The current research (including this 
monograph) really only scratches the surface of the possibilities in the field. 
Even though early results seem very promising there still remains much re­
search to be done by including the actual operator. Notably absent from current 
research are user studies. These are more difficult to conduct than one might 
first imagine. The process of classifying behavior into malicious and benign, 
using approaches such as ours, is a highly skilled task (where operator training 
would probably have a major influence on the results). It is also a highly cogni­
tive task, and hence difficult to observe objectively. If such studies are to be of 
value they would almost certainly be costly, and the state of research into how 
to measure and interpret the results may not be sufficiently well developed to 
justify such experiments. . 

If the authors were to single out one area presented in this book as the most 
promising for further research it would be the application of visualization to 
make machine learning systems more accessible to the user. We have not found 
much in the literature in the way of applying visualization to this area, and 
based on the early results in this book the area looks promising. 
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